3. METODE PENELITIAN

3.1 Lokasi Penelitian

Lokasi Penelitian ini dilaksanakan didaerah Kondangjajar Kecamatan Cijulang, Kabupaten Pangandaran, Provinsi Jawa Barat. Sebagai gambaran lokasi penelitian dibawah ini didapat dari *google earth* dapat dilihat pada gambar 3.1 dibawah ini:

Gambar 3.1 Lokasi Penelitian Bandar Udara Nusawiru

Gambar 3.2 Runway Bandar Udara Nusawiru

3.2 Teknik Pengumpulan data

3.2.1 Data Primer

Pada penulisan tugas akhir ini tidak menggunakan data primer hanya data sekunder yang diperlukan untuk penunjang penelitian ini.

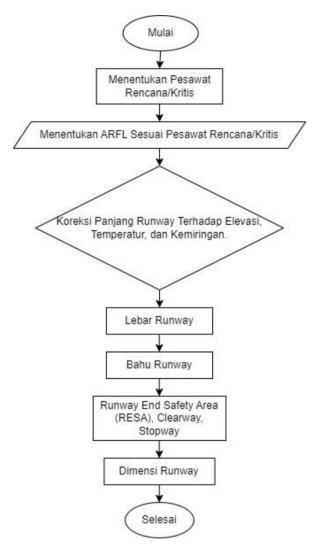
3.2.2 Data Sekunder

Untuk melakukan evaluasi kelayakan *runway* diperlukan beberapa data yang di olah dalam perhitungan. Data yang didapat berupa data sekunder, data sekunder dipeoleh dari intansi yang terkait, berikut adalah data-data yang diperlukan untuk tugas akhir ini, antara lain:

- 1. Layout Bandara Nusawiru.
- 2. Tebal eksisting landasan pacu.
- 3. Data Klimatologi (angin).
- 4. Data geoteknik (CBR tanah lokasi).
- 5. Data pergerakan pesawat yang terdiri dari data lalu lintas pesawat, dan pertumbuhan pesawat.

3.3 Analisis Data

3.3.1 Perhitungan Geometrik Runway

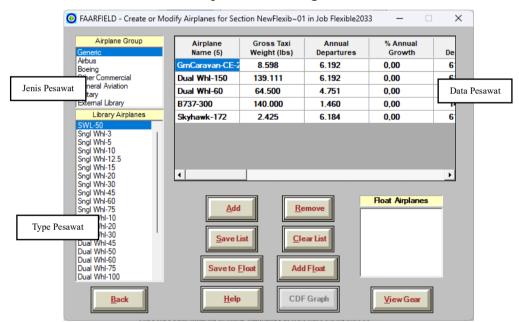

Perhitungan geometrik *runway* didasarkan pada pesawat kritis *(critical aircraft)* atau pesawat rencana *(desain aircraft)*. Sebelum menghitung geometrik perlu ditentukan arah orientasi *runway*. Untuk menentukan arah *runway*, ini dilakukan dengan menggunakan prosedur grafis yang dikenal sebagai "*wide rose*" yang didasarkan pada data arah angin dari bandara Nusawiru. Proses pembuatan *wide rose* di bandara wiriadinata adalah sebagai berikut:

- 1. Membuat lingkaran yang mewakili tiap-tiap jenis data kecepatan angin yang dikumpulkan.
- 2. Membagi lingkaran menjadi beberapa bagian yang sama besar yang mewakili setiap arah mata angin.
- 3. Membuat garis atau bidang persegi panjang di atas lingkaran *wide rose*, kemudian memutarnya dengan sudut tertentu untuk menghitung peresentase total arah angin yang tersebar. Metode ini dikenal sebagai *usability factor*:

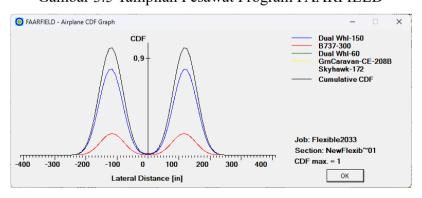
Setelah didapat arah *runway*, dilakukan Geometrik dengan tahap sebagai berikut:

1. Menentukan jenis pesawat rencana dan pesawat kritis

2. Menghitung ARFL pesawat kritis atau rencana dengan mempertimbangkan faktor-faktor koreksi untuk elevasi, temperatur dan kemiringan.

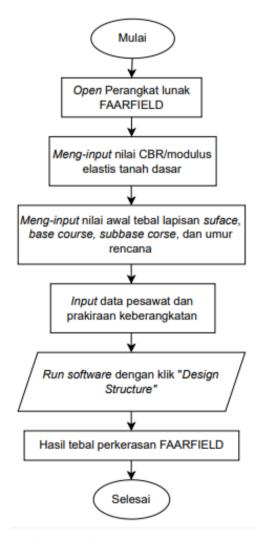

Gambar 3.3 Perhitungan Geometrik *Runway*

3.3.2 Perhitungan Perkerasan Runway


Perhitungan untuk lapis perkerasan *runway* dilakukan dengan dua metede. Metode pertama dilakukan secara manual, sedangkan metode kedua dengan bantuan perangkat lunak FAARFIELD. FAARFIELD adalah *Software* yang dibuat oleh FAA terkait tebal perkerasan. Prosedur *layer elastic* digunakan oleh FAARFIELD untuk merencanakan perkerasan baru dan *overlay* pada perkerasan lentur dan kaku. Berikut adalah tampilan dari program FAARFIELD:

Gambar 3.4 Tampilan Menu Program FAARFIELD

Gambar 3.5 Tampilan Pesawat Program FAARFIELD



Gambar 3.6 Contoh hasil CDF dari program FAARFIELD

Data-data yang diperlukan untuk memasukan data pada FAARFIELD adalah sebagai berikut:

- 1. Nilai CBR, untuk input nilai data sub-grade
- 2. Material *properties* dari setiap lapisan, seperti modulus, ketebalan untuk lapisan, dan umur.
- 3. Karakteristik pesawat, termasuk beban roda, letak roda, dan tekanan ban.
- 4. Jenis pesawat.
- 5. Jumlah keberangkatan tahunan pesawat.

Setelah data data dimasukan, maka FAARFIELD akan menghasilkan tebal setiap lapisan *pavement* dan *reference thickness*.

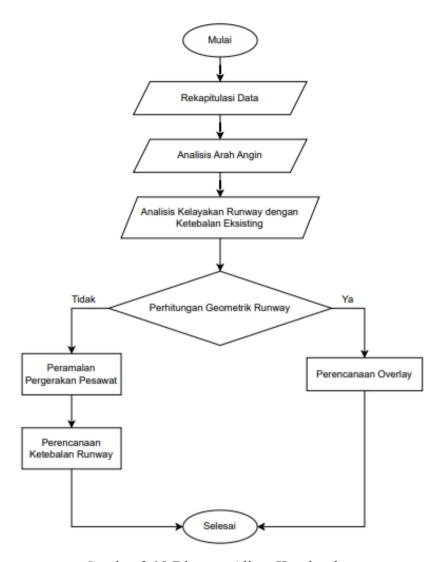
Gambar 3.7 Urutan Pengerjaan Perhitungan Perkerasan menggunakan *Software* FAARFIELD

Untuk metode pengerjaan manual, berikut dilakukan dengan cara:

- 1. Tentukan nilai CBR untuk *subgrade* dan *subbase*. Kemudian, tentukan tipe roda pendaratan, berat lepas landas (MTOW), dan hitung *equivalen Annual departure* dari pesawat rencana/kritis.
- 2. Gunakan memplot grafik untuk menghitung tebal perkerasan total, tebal *subbase*, tebal permukaan *surface*, dan tebal *base course*.

Gambar 3.8 Urutan Pengerjaan Perhitungan Perkerasan menggunakan Cara Manual

3.3.3 Perhitungan *Overlay*


Overlay adalah pelapisan ulang struktur perkerasan. Perhitungan overlay dibantu oleh perangkat lunak FAARFIELD. Proses perhitungan overlay adalah sebagai berikut:

Gambar 3.9 Urutan Pengerjaan Perhitungan *Overlay* dengan *Software* FAARFIELD

3.3.4 Diagram Alir

Berikut adalah diagram alir keseluruhan:

Gambar 3.10 Diagram Aliran Keseluruhan

Tahap pengerjaan:

- 1. Rekapitulasi data yang didapat dari bandar udara Nusawiru;
- 2. Mengevaluasi arah (orientasi) runway;
- 3. Mengevaluasi geometrik runway;
- 4. Menganalisa ketebalan *runway* pada kondisi eksisting;
- 5. Menghitung ketebalan tebal overlay;
- 6. Merencanakan ketebalan runway dengan forecasing.