
BAB III

METODE PENELITIAN

3.1 Flowchart Penelitian

Metodologi penelitian yang digunakan dalam penelitian ini adalah sebagai berikut:

Gambar 3. 1 Flowchart Proses Penelitian

Diagram alur prosedur penelitian pada Gambar 3.1 menerangkan proses kerja penelitian analisis kerja *relay* proteksi pada PT. PLN (Persero) Gardu Induk Garut 150 kV pada penyulang CKMI dan INTI terbagi menjadi beberapa tahapan. Tahapan tersebutnya diantaranya observasi, analisis masalah, pengumpulan data, pembuatan single line diagram dan memasukan data pada ETAP 19.0.1, simulasi manuver dan menambahkan simulasi gangguan hubung singkat pada ETAP 19.0.1, dan analisis hasil simulasi pada ETAP 19.0.1 dan kemudian dapat diambil kesimpulan.

3.1.1 Identifikasi Masalah

Merupakan tahapan mengamati dan mengidentifikasi masalah yang terjadi untuk mengumpulkan data sebelum penelitian.

3.1.2 Pengumpulan dan Pengolahan Data

Pada tahap ini dilakukan observasi ke lapangan untuk melihat secara langsung dan melakukan pengumpulan data dari PT. PLN (Persero) Gardu Induk Garut 150 kV yang akan digunakan untuk memudahkan penelitian serta memvalidasi data untuk memastikan bahwa data yang digunakan nanti adalah data yang terbaru dan asli. Tabel 3.1 dan 3.2 merupakan data setting proteksi.

Tabel 3. 1 Data sisi penyulang CKMI.

Nama Data	Jenis Data	Keterangan
	Merk	XIAN
Data Transformator Daya	Daya	60 MVA
Data Transformator Daya	Tegangan	150/20 kV
	Impedansi (z)	11,96
Data Transformator Daya	Tegangan Primer	150 kV
= = 3.1.1.1.101 2 uj u	Tegangan Sekunder	20 kV

Nama Data	Jenis Data	Keterangan					
	Hubungan Belitan	Ynyn0					
	Ground Resistor	12 Ohm					
	Merk	SIFANG					
	Туре	CSC-211					
Data <i>Relay</i> OCR sisi Incoming 150 kV	Is	4.6 A					
	TMS OCR	0.344 SI					
	Ratio CT	300 / 5 A					
	Merk	SIFANG					
	Туре	CSC-211					
Data <i>Relay</i> GFR sisi Incoming 150 kV	Is	3.08 A					
	TMS GFR	0.516 SI					
	Ratio CT	300 / 5 A					
	Merk	SCHNEIDER					
	Туре	MICOM P142					
Data Relay OCR sisi Incoming 20kV	Is	5 A					
	TMS OCR	0.25 SI					
	Ratio CT	2000 / 5 A					
	Merk	SCHNEIDER					
	Type	MICOM P142					
Data Relay GFR sisi Incoming 20kV	Is	1.025 A					
	TMS GFR	0.13 SI					
	Ratio CT	2000 / 5 A					
	Merk	MICOM					
	Type	P123					
Data Relay OCR sisi Outgoing 20kV	Is	7.5 A					
	TMS OCR	0.2 SI					
	Ratio CT	800 / 5 A					
	Merk	MICOM					
Data <i>Relay</i> GFR sisi Outgoing 20kV	Туре	P123					
Zam Rowy Of Reside Outgoing 20k v	Is	1.6 A					
	TMS GFR	0.025 SI					

Nama Data	Jenis Data	Keterangan
	Ratio CT	800/5 A

Tabel 3. 2 Data sisi penyulang INTI

Nama Data	Jenis Data	Keterangan					
	Merk	UNINDO					
	Daya	60 MVA					
	Tegangan	150/20 kV					
	Impedansi (z)	12.07					
Data Transformator Daya	Tegangan Primer	150 kV					
	Tegangan Sekunder	20 kV					
	Hubungan Belitan	Ynyn0					
	Ground Resistor	12 Ohm					
	Merk	NR					
	Туре	PCS 9611					
Data <i>Relay</i> OCR sisi Incoming150 kV	Is	4.6 A					
	TMS OCR	0.35 SI					
	Ratio CT	300 / 5 A					
	Merk	NR					
	Туре	PCS 9611					
Data <i>Relay</i> GFR sisi Incoming 150 kV	Is	1.9 A					
	TMS GFR	0.65 SI					
	Ratio CT	2000 / 5 A					
Data Relay OCR sisi Incoming 20kV	Merk	NR					
Data Relay OCK Sist Incoming 20KV	Туре	PCS 9611					

Nama Data	Jenis Data	Keterangan				
	Is	5.2 A				
	TMS OCR	0.23 SI				
	Ratio CT	2000 / 5 A				
	Merk	NR				
Data <i>Relay</i> GFR sisi Incoming 20kV	Туре	PCS 9611				
Data Retay OFK SISI Incoming 20KV	Is	0.85				
	TMS GFR	0.15 SI				
	Ratio CT	2000 / 5 A				
	Merk	MICOM				
	Туре	P123				
Data Relay OCR sisi Outgoing 20kV	Is	7.5 A				
	TMS OCR	0.2 SI				
	Ratio CT	800 / 5 A				
	Merk	MICOM				
	Туре	P123				
Data Relay GFR sisi Outgoing 20kV	Is	1.6 A				
	TMS GFR	0.025 SI				
	Ratio CT	800 / 5 A				

3.1.3 Simulasi Gangguan

Pada penelitian ini dilakukan 2 simulasi gangguan sebagai berikut:

1. Simulasi Gangguan Kondisi Eksisting

Gambar 3. 2 Flowchart Simulasi Kondisi Eksisting CKMI

Gambar 3.2 diatas merupakan simulasi gangguan hubung singkat pada kondisi eksisting pada penyulang CKMI tanpa manuver jaringan dengan menggunakan simulasi pada ETAP 19.0.1 sesuai dengan spesifikasi peralatan eksisting yang ada pada penyulang CKMI.

2. Simulasi Gangguan Kondisi Manuver Jaringan

Gambar 3. 3 Flowchart Smulasi Manuver Jaringan

Gambar 3.3 diatas merupakan simulasi gangguan hubung singkat pada kondisi manuver jaringan antara penyulang CKMI dan INTI dengan menggunakan simulasi pada ETAP 19.0.1 sesuai dengan spesifikasi peralatan yang ada.

Dalam penelitian ini menggunakan 2 skenario pembebanan 40% minimum dan 80% maksimum yang mengacu pada standar SPLN No.17 Tahun 2014. Untuk mengetahui nilai beban pada tiap transformator distribusi menggunakan perhitungan sebagai berikut:

Pembebanan Trafo = Kapasitas Trafo Daya \times Skenario [3.1]

Dalam penelitian ini menggunakan perbandingan pehitungan manual dan perhitungan menggunakan *software* ETAP 19.0.1 menggunakan rumus pada *software* Microsoft Excel sebagai berikut:

=TEXT(ABS((Variable1-Variable2)/Variable1);"0.00")

3.1.4 Analisa Hasil Simulasi

Selanjutnya melakukan analisa hasil simulasi gangguan pada *software* ETAP 19.0.1 untuk mendapatkan kesimpulan bahwa kinerja dari setting *relay* yang eksisting apakah sudah tepat atau masih terdapat kekurangan yang mengharuskan untuk resetting *relay* yang tepat.

3.2 Tempat dan Waktu Penelitian

a. Tempat Penelitian

Penelitian ini bertempat di Penyulang CKMI yang bermanuver dengan Penyulang INTI yang bertempat di Kota Tasikmalaya.

b. Waktu Penelitian

Penelitian ini dilaksanakan setelah proposal usulan penelitian ini diterima dan layak untuk dilanjutkan.

3.3 Spesifikasi Perangkat Simulasi

Tabel 3.1 diabwah ini merupakan data spesifikasi laptop yang pergunakan pada penelitian ini.

Tabel 3. 3 Perangkat Simulasi

No	Komponen	Spesifikasi					
1	Prosesor	AMD A12 A12-9800B 2,7 GHz					
2	RAM	8GB DDR4-SDRAM 1866 MHz					
3	Penyimpanan	256 GB SSD					
4	Kartu Grafis	AMD Radeon R7					

3.4 *Timeline* Penelitian

Tabel 3.4 dibawah ini merupakan timeline penelitian ini.

Tabel 3. 4 *Timeline* Penelitian

	No Jenis Kegiatan		Timeline Penelitian										
No			November			Desember				Januari			
		2024							2025				
		1	2	3	4	1	2	3	4	1	2	3	4
1	Pembuatan Single Line Diagram dan												
	Penginputan Data												
2	Simulasi Gangguan pada Kondisi Eksisting												
3	Simulasi Gangguan pada Kondisi Manuver												
4	Analisa Hasil Simulasi												