BAB II

LANDASAN TEORI

2.1 Landasan Teori

2.1.1 Allo-HCT

Hematopoietic cell transplantation (HCT) merupakan pilihan pengobatan bagi pasien dengan gangguan hematologi ganas (malignant) atau non-ganas (nonmalignant) agar dapat kembali menghasilkan sistem kekebalan tubuh yang normal. HCT dibedakan menjadi autologous HCT (auto-HCT) dan allogeneic HCT (allo-HCT) dengan mengacu kepada sumber sel hematopoietik. Auto-HCT berarti menggunakan sel milik pasien sendiri, sedangkan allo-HCT menggunakan sel hematopoietik dari pendonor dengan human leukocyte antigen (HLA) yang kompatibel (Khaddour dkk., dalam Saad dkk., 2020).

Terdapat tiga sumber donor potensial, yaitu donor yang memiliki hubungan darah, sukarelawan tanpa hubungan keluarga, dan unit UCB (*Umbilical Cord Blood*). Rejimen persipan (*preparative regimen*) diberikan sebelum allo-HCT untuk menghilangkan sisa sel ganas dan menekan sistem kekebalan tubuh penerima, agar pencangkokan sel dari donor dapat dilakukan dan mencegah penolakan cangkok (Saad dkk., 2020). Berbagai gangguan hematologi yang terbukti berhasil ditangani melalui allo-HCT antara lain AML, ALL, MDS, *chronic myeloid leukemia*, *chronic lymphocytic leukemia*, *multiple myeloma*, *primary and secondary myelofibrosis*, *Hodgkin lymphoma*, dan *non-Hodgkin lymphoma*.

2.1.2 Event-free Survival (EFS)

Menurut National Cancer Institute, event-free survival (EFS) merupakan rentang waktu dimana pasien bebas terhadap komplikasi ataupun kejadian yang ingin dicegah atau ditunda oleh pengobatan. EFS dalam konteks HCT meliputi relapse, progresi penyakit, atau kematian dengan penyebab apapun. Status EFS seringkali digunakan dalam mengevaluasi Overall Survival (OS). OS didefinisikan sebagai waktu kelangsungan hidup total sejak HCT hingga terjadi kematian. Pasien yang tidak mengalami kejadian hingga akhir pengamatan akan dianggap "censored" (Fujimoto dkk., 2021). EFS berkaitan erat dengan morbiditas dan mortalitas. Morbiditas berarti keadaan bergejala atau tidak sehat pada suatu kondisi, sedangkan mortalitas mengacu kepada kematian yang disebabkan oleh suatu peristiwa (Bien dkk., 2022). Graft versus host disease (GVHD) menjadi penyebab morbiditas dan mortalitas yang signifikan, dimana terdapat komplikasi utama pasca HCT yang berdampak terhadap kualitas hidup pasien (de Vere Hunt dkk., 2021).

2.1.3 Analisis Survival

Analisis survival adalah metode statistika yang digunakan dalam menganalisis data waktu hingga terjadinya suatu peristiwa (*time-to-event data*) (Klein dkk., dalam Rai dkk., 2021). Data survival mencakup waktu kejadian dan berbagai variabel independen yang terkait dengan peristiwa tersebut. Tujuan utama dari analisis survival antara lain menganalisis pola waktu, mengevaluasi penyebab *censored data*, membandingkan kurva survival dan menilai hubungan antar variabel (Rai dkk., 2021).

Teknik yang umum digunakan dalam analisis survival, yaitu Kaplan-Meier (K-M). Metode K-M akan menghitung probabilitas bertahan hidup pada berbagai titik waktu dan menghasilkan kurva survival, termasuk nilai *censored* (Indrayan & Tripathi, 2022). Informasi minimal yang dibutuhkan untuk membentuk kurva survival dari K-M (D'Arrigo dkk., 2021) adalah *time-to-event* (t_1 , t_2 , ..., t_j dengan $j \le n$) serta variabel status biner (1 jika peristiwa terjadi dan 0 jika *censored*). Probabilitas bertahan hidup pada waktu tertentu (t_j) dihitung berdasarkan jumlah individu yang masih hidup setelah waktu t_j dan jumlah individu berisiko sebelum waktu t_j . Rumus probabilitas survival terdapat pada Persamaan 2.1

$$\widehat{p}_{j} = \frac{n_{j} - d_{j}}{n_{j}} \tag{2.1}$$

di mana:

 \hat{p}_i = probabilitas survial pada waktu t_i

 n_i = jumlah individu yang masih hidup sebelum waktu t_j

 d_i = jumlah individu yang mengalami kejadian pada waktu t_i

Perkalian semua probabilitas survival akan menghasilkan probabilitas survival kumulatif hingga waktu t_j . Probabilitas survival kumulatif ditunjukkan dengan simbol S(t) dan Π melambangkan operasi perkalian. Perhitungan probabilitas kumulatif terdapat pada Persamaan 2.2

$$\widehat{S(t)} = \prod_{j/t_{j \le t}} \widehat{p_j} \tag{2.2}$$

di mana:

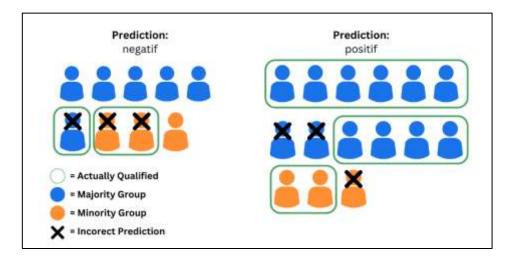
 $\widehat{S(t)}$ = probabilitas survial kumulatif

 $\prod_{j/t_{j \le t}}$ = perkalian untuk semua j, di mana waktu kejadian $t_{j \le t}$

2.1.4 Fairness dalam Machine Learning

Fairness dalam machine learning didefinisikan sesuai dengan pengukuran spesifik pada konteks tertentu, sehingga tidak ada model yang adil menurut semua jenis pengukuran. Fairness dari perspektif komputasi dapat diartikan sebagai kondisi dimana hasil prediksi model tidak menunjukkan diskriminasi terhadap atribut sensitif. Fairness berbeda dengan bias karena berfokus pada hasil yang tidak diskriminatif, sedangkan bias mengacu kepada kesalahan sistematis yang memengaruhi performa model untuk kelompok berbeda (Wan dkk., 2023).

Sebuah model dapat memiliki kinerja yang baik, tetapi memerlukan pemeriksaan dampak model pada berbagai kelompok. Pemisahan demografi dan evaluasi pada setiap kelompok dapat mengidentifikasi adanya kemungkinan ketidakadilan. Seringkali ditemukan bahwa prediksi "positif" lebih banyak diterima oleh kelompok mayoritas daripada kelompok minoritas. Gambar 2.1 mengilustrasikan contoh ketidakadilan yang diberikan oleh model.



Gambar 2. 1 Ilustrasi Ketidakadilan dalam Model Prediksi Machine Learning

2.1.5 Fairness Regression

Fairness regression merupakan metode yang bertujuan untuk mengatasi ketidakadilan dalam model machine learning terhadap tugas regresi. Fairness dalam regresi lebih kompleks dibandingkan dengan klasifikasi karena label regresi bersifat kontinu. FaiReg (Mohamed & Schuller, 2022) bekerja dengan menormalisasi label berdasarkan atribut terlindungi untuk menghilangkan bias pelabelan. Normalisasi dilakukan dengan menghitung statistik label berdasarkan variabel terlindungi yang akan melakukan transformasi label ke dalam set fair labels (\hat{y}_1 , ..., \hat{y}_n). Rumus transformasi label ke bentuk fair labels terdapat pada Persamaan 2.3

$$\hat{y}_i = \frac{y_i - \mu_{ci}}{\sigma_{ci}} \cdot \sigma + \mu \tag{2.3}$$

di mana:

 y_i = nilai asli dari data ke-i

 \hat{y}_i = fair labels

 μ_{ci} = mean dari semua *instances* (c_i) pada variabel terlindungi

 μ = mean target

 σ_{ci} = standar deviasi dari semua instances (c_i) pada variabel

terlindungi

 σ = standar deviasi target

Pelatihan model dilakukan untuk meminimalkan fungsi loss(L) berdasarkan $fair\ labels$. Prediksi model dinyatakan dengan p=M(X;W), yaitu fungsi model (M) yang digunakan untuk menghasilkan prediksi berdasarkan data input X dan parameter model W. Fungsi loss L(y,p) merupakan $Mean\ Squared\ Error\ (MSE)$, yang umum digunakan untuk mengukur selisih kuadrat antara label sebenarnya (\hat{y}_i) dan prediksi model (p_i) untuk seluruh data n. Perhitungan fungsi kerugian didefinisikan pada Persamaan 2.4

$$L(y,p) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - p_i)^2$$
 (2.4)

di mana:

L(y,p) = fungsi kerugian, dengan y nilai sebenarnya dan p prediksi

model

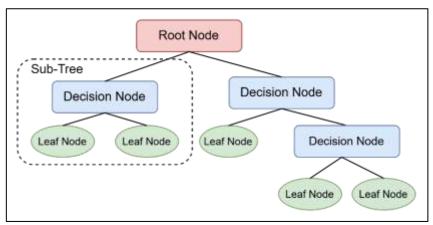
 p_i = prediksi model untuk data ke-i

2.1.6 Data Preprocessing

Data preprocessing adalah serangkaian teknik yang bertujuan untuk meningkatkan kualitas data. Teknik yang digunakan dalam data preprocessing antara lain data cleaning dan data transformation. Data cleaning merupakan proses menangani missing values melalui penghapusan atau imputasi, serta deteksi outliers. Data transformation merupakan proses mengonversi data numerik menjadi kategori (atau sebaliknya) agar sesuai dengan algoritma yang digunakan, serta mencakup penggabungan fitur (C. Fan dkk., 2021). Selain itu, terdapat juga Exploratory Data Analysis (EDA) yang merupakan proses observasi awal pada data untuk menemukan pola, anomali, dan menguji hipotesis awal serta asumsi dengan beberapa statistik dan representasi visual (Da Poian dkk., 2023).

2.1.7 Decision Tree

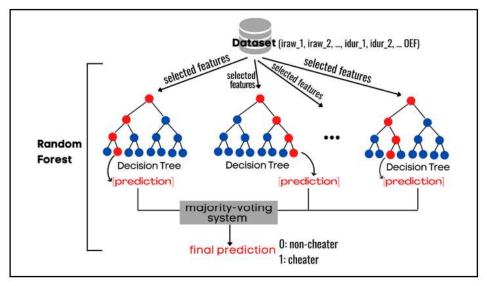
Decision Tree (DT) adalah metode untuk membuat model prediksi berdasarkan struktur pohon di mana setiap node mewakili keputusan atau pembagian berdasarkan atribut tertentu. Cara kerja DT dimulai dengan memilih fitur paling informatif sebagai akar pohon, kemudian membagi data menjadi subset berdasarkan nilai-nilai fitur tersebut, dan diulang secara rekursif hingga mencapai kondisi tertentu (Mienye & Jere, 2024). Contoh struktur DT ditunjukkan ditunjukkan pada Gambar 2.2.



Gambar 2. 2 Struktur Decision Tree

2.1.8 Bagging

Bootstrap Aggregating (bagging) adalah metode yang menggunakan satu model pengklasifikasi untuk dilatih pada berbagai subset dari dataset yang sama. Subset data dibuat dengan cara bootstrapping, yaitu mengambil salinan data secara acak dengan penggantian yang akan digunakan untuk melatih beberapa model secara bersamaan. Hasil akhir didapatkan dengan menggabungkan prediksi dari berbagai model dasar yang umumnya menggunakan majority voting (Gheni & Al-Yaseen, 2023). Mekanisme bagging secara umum ditunjukkan pada Gambar 2.2



Gambar 2. 3 Mekanisme *Bagging (T. Zhou & Jiao, 2023)*

Random Forest (RF) merupakan teknik bagging yang menggunakan decision trees untuk membentuk sekumpulan pohon keputusan (forest). Setiap tree dalam RF dibangun melalui proses pemisahan (node splitting) hingga aturan penghentian terpenuhi. Prinsip utama pemisahan yaitu meminimalkan impuritas yang diukur dengan indeks gini dan varians. Prediksi final didapatkan dari majority voting atau averaging berdasarkan hasil dari seluruh decision tree pada forest (Hu & Szymczak, 2023). Pseudocode untuk algoritma RF terdapat pada Algoritma 2.1.

Algoritma 2.1 Random Forest

for b = 1 to B:

- 1. Ambil bootstrap sample Z* dari data latih.
- 2. Bangun pohon T b dengan:
 - a. Pilih m variabel acak dari p variabel.
 - b. Pilih split terbaik menggunakan kriteria tertentu.
 - c. Pisahkan node menjadi dua node anak.
 - d. Ulangi proses hingga kondisi berhenti tercapai.

Output: kumpulan pohon $\{T_b\}_1^B$.

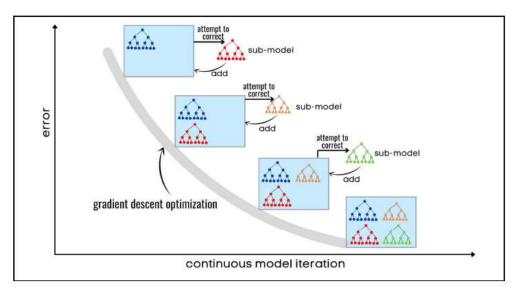
Prediksi:

Regresi: untuk prediksi di titik baru x, hitung rata-rata hasil prediksi semua pohon.

Klasifikasi: ambil prediksi kelas dari setiap pohon dan gunakan majority voting.

2.1.9 Boosting

Boosting adalah metode yang menggunakan proses forward stagewise untuk mengubah model lemah menjadi model kuat. Proses ini dilakukan dengan memberikan bobot lebih besar pada sampel pelatihan yang salah dihitung pada iterasi sebelumnya. Hasil akhir berupa penggabungan semua iterasi menggunakan pembobotan (Y. Zhang dkk., 2022). Gambar 2.3 menunjukkan mekanisme boosting secara umum.



Gambar 2. 4 Mekanisme *Boosting (T. Zhou & Jiao, 2023)*

melibatkan penyesuaian bobot pada pelatihan model baru. Bobot dari setiap regresor mencerminkan kepentingannya ketika mendapatkan hasil akhir prediksi. Sampel yang salah diprediksi akan diberikan bobot yang lebih besar. Bobot baru tersebut digunakan untuk pelatihan selanjutnya. Setelah seluruh iterasi selesai, semua model akan digabungkan untuk membentuk *strong learner*. *Pseudocode* untuk algoritma AdaBoost terdapat pada Algoritma 2.

```
Algoritma 2.2 AdaBoost

Input: Data latih S = (x1, y1), ..., (xm, ym)
    Algoritma dasar L
    Jumlah iterasi T
    Prosedur:
    Inisialisasi bobot untuk setiap sampel x
    for t = 1, ..., T:
        1. Latih regresor dasar untuk meminimalkan weighted error
        2. Hitung bobot regresor menggunakan kesalahan weighted error
        3. Perbarui bobot untuk setiap sampel x
    end for
Output: Kombinasikan prediksi dari semua regresor dasar dengan weighted sum
```

b. Gradient Boosting Machine (GBM) merupakan jenis algoritma ensemble yang membangun model prediktif secara bertahap dengan menambahkan base learner yang berkorelasi dengan gradien negatif dari fungsi loss seluruh ensemble. Setiap base learner dibangun untuk memperbaiki kesalahan (residual) yang dihasilkan oleh model sebelumnya. Teknik linear search memastikan bahwa kontribusi base learner optimal untuk mengurangi kesalahan prediksi tanpa overfitting. Pseudocode untuk algoritma GBM terdapat pada Algoritma 3.

```
Algoritma 2.3 GBM
Input: Data latih S = (x1, y1), ..., (xm, ym)
Fungsi loss L(y,F(x))
Jumlah iterasi T
Prosedur:
Inisialisasi model awal dengan loss kuadrat
for t = 1, ..., T:
    1. Hitung residual untuk setiap sampel
    2. Latih base learner menggunakan nilai residual
    3. Cari skalar linear search yang meminimalkan fungsi
    loss
    4. Perbarui model
end for
Output: kombinasi prediksi semua model sebelumnya
```

c. Extreme Gradient Boosting (XGBoost) merupakan pengembangan dari algoritma gradient boosting yang ditingkatkan dengan penambahan teknik regularisasi L1 (Lasso) dan L2 (Ridge) pada fungsi kerugian (loss function) untuk membantu mengurangi risiko overfitting. XGBoost menggunakan pendekatan Taylor approximation, yaitu memanfaatkan turunan pertama (gradien) dan turunan kedua (hessian), untuk mempercepat dan menstabilkan proses optimasi. Pseudocode untuk algoritma XGBoost terdapat pada Algoritma 4.

```
Algoritma 2.4 XGBoost

Input: Data latih S = (x<sub>1</sub>, y<sub>1</sub>), ..., (x<sub>m</sub>, y<sub>m</sub>)

Fungsi loss L(y,F(x))

Jumlah iterasi T

Learning rate η

Prosedur:

Inisialisasi model awal dengan loss kuadrat

for t = 1, ..., T:

1. Hitung pseudo-residual untuk setiap sampel

2. Latih base learner menggunakan nilai residual

3. Hitung nilai optimal leaf

4. Perbarui model

end for

Output: kombinasi prediksi semua model
```

d. Light Gradient Boosting Machine (LightGBM) merupakan implementasi yang lebih efisien dari GBM. LightGBM menggunakan strategi Gradient-based One-Side Sampling (GOSS) dan Eksklusif Feature Bundling (EFB) untuk meningkatkan kecepatan dan akurasi. Teknis GOSS melibatkan pengecualian sejumlah besar sampel dengan gradien kecil dan hanya menggunakan sampel yang tersisa untuk menghitung information gain (IG). IG dihitung berdasarkan pengurangan kesalahan setelah data dibagi menjadi beberapa subset, yang digunakan untuk menentukan pemilihan terbaik pada pohon keputusan. Teknik FEB melakukan pemilihan fitur dengan menggabungkan atribut yang saling eksklusif, sehingga mengurangi jumlah atribut. Kedua teknik tersebut membuat kompleksitas data berkurang tanpa kehilangan informasi penting. Pseudocode untuk algoritma LightGBM terdapat pada Algoritma 5.

```
Algoritma 2.5 LightGBM

Input: Data latih S = (x1, y1), ..., (xm, ym)

Fungsi loss L(y,F(x))

Jumlah iterasi T

Rasio sampling gradien besar a, dan gradien kecil b

Prosedur:

Gabungkan fitur yang saling ekslusif menggunakan FEB

Inisialisasi model awal
```

```
for t = 1, ..., T:
    1. Hitung gradien absolut setiap data
    2. Resampling dataset menggunakan GOSS
    3. Hitung nilai informasi gain untuk setiap fitur
    4. Dapatkan tree baru
    5. Perbarui model
    end for
Output: kombinasi dari semua tree yang dibangun
```

e. Categorical Boosting (CatBoost) merupakan algoritma boosting yang dirancang untuk menangani data dengan banyak fitur kategorikal. Algoritma ini menghindari penggunaan sampel yang sama pada setiap iterasi dan mengurangi overfitting. CatBoost menggunakan unbiased gradient estimation, yaitu pendekatan estimasi gradien yang tidak bias untuk meningkatkan stabilitas dan akurasi model. CatBoost secara otomatis mengubah fitur kategorikal menjadi numerik berbasis permutasi acak, sehingga tidak memerlukan pre-processing. Pseudocode untuk algoritma CatBoost terdapat pada Algoritma 6.

```
Algoritma 2.6 CatBoost
Input: Data latih S = (x_1, y_1), \ldots, (x_m, y_m)
   Fungsi loss L(y, F(x))
   Jumlah iterasi T
   Learning rate η
   Fitur kategorikal C
   Prosedur:
   Encode C menggunakan target statistics dengan ordered
sampling
    Inisialisasi model awal
   for t = 1, ..., T:
       1. Hitung gradien absolut setiap data
       2. Latih base learner dengan ordered boosting
       3. Hitung nilai optimal untuk setiap lead
       4. Perbarui modeldengan learning rate \eta
    end for
Output: kombinasi dari semua tree yang dibangun
```

2.1.10 Grid Search

Grid Search adalah pendekatan hyperparameter tuning yang digunakan untuk menemukan kombinasi hyperparameter optimal pada model. Hyperparameter merupakan parameter yang harus ditentukan sebelumnya untuk melatih model dan tidak dapat dipelajari dari data. Grid search bekerja dengan mencari secara ekstensif melalui semua kombinasi hyperparameter yang potensial dalam rentang atau kumpulan nilai tertentu (Shams dkk., 2024). Terdapat beberapa hyperparameter yang dapat dioptimalisasi sebagai berikut (Tarwidi dkk., 2023).

- a. 'max_depth', yaitu kedalaman maksimum setiap pohon.
- b. 'n_estimators', yaitu jumlah decision tree pada forest.
- c. 'learning_rate', yaitu ukuran langkah pada setiap iterasi untuk memperbarui bobot model selama pelatihan.
- d. 'subsample', yaitu proporsi data yang akan dijadikan sampel untuk setiap pohon.
- e. 'colsample_bytree', yaitu rasio subsampel kolom saat membangun setiap pohon.

2.1.11 K-Fold Cross Validation

K-Fold Cross Validation adalah salah satu metode cross-validation yang membagi dataset menjadi k subset dengan ukuran hampir sama (folds). Proses validasi dilakukan dengan mengambil satu fold sebagai data uji dan sisa fold lainnya sebagai data latih. Proses ini diulang k kali, sehingga setiap fold digunakan sebanyak satu kali sebagai data uji. Hasil evaluasi dari setiap iterasi dirata-ratakan untuk mendapatkan estimasi performa model (Yates dkk., 2023).

2.1.12 Metrik Evaluasi

2.1.12.1 C-Index

Concordance Index (C-Index) adalah metrik yang digunakan untuk mengevaluasi kemampuan model prediksi dalam membedakan subjek dengan risiko lebih tinggi dari subjek dengan risiko lebih rendah. C-Index menilai kesesuaian urutan kejadian pada subjek. Subjek yang mengalami kejadian di awal diberi skor prediksi yang lebih tinggi daripada subjek yang mengalami kejadian tersebut setelahnya, atau tidak mengalami kejadian sama sekali dalam periode penelitian. Formula C-Index terdapat pada Persamaan 2.5 (Hartman dkk., 2023).

$$C - Index = \frac{Iml \ Pasangan \ Corcondance + 0.5 (Iml \ Pasangan \ Tak \ Tentu)}{Iml \ Pasangan \ yang \ Dapat \ Dibandingkan}$$
(2.5)

2.1.12.2 Time-dependent ROC (AUC(t))

Time-dependent Receiver Operating Characteristic (Time-dependent ROC) merupakan analisis ROC untuk setiap titik waktu pengamatan pada time-to-event data (Park dkk., 2021). Perhitungan time-dependent ROC mencakup sensitivitas dan spesifisitas. Sensitivitas (SensCD) adalah probabilitas individu dengan nilai melebihi ambang batas tertentu telah mengalami kejadian sebelum waktu t. Spesifisitas (SpecCD) adalah probabilitas individu dengan nilai di bawah ambang batas belum mengalami kejadian sebelum waktu t. AUC sebagai luas di bawah kurva ROC dibentuk dengan menggambarkan sensitivitas vs. 1-spesifisitas. Estimasi sensitivitas dan spesifisitas dilakukan pada berbagai nilai ambang batas k, sehingga nilai AUC dihitung sebagai integral karena luas di bawah kurva ROC. Formula AUC terdapat pada Persamaan 2.6 (Nuño & Gillen, 2021).

$$AUC(t) = \int_{-\infty}^{\infty} SensCD(t, k)d(1 - SpecCD(t, k))$$
 (2.6)

AUC juga dikenal sebagai AUROC, *c-statistic* untuk hasil biner, dan *C-Index* untuk hasil *time-to-event*. Nilai yang mendekati 1 menunjukkan model sangat baik membedakan risiko subjek, sedangkan nilai 0,5 mengartikan model serupa prediksi acak. Kualitas kinerja model melalui kualifikasi rentang nilai terdapat pada Tabel 2.1 (White dkk., 2023).

Tabel 2. 1 Rentang Kualitas Kinerja Model untuk C-Index dan AUC

Skor	Keterangan
> 0,9	Luar Biasa (Excellent)
0,8 – 0,9	Baik (Good)
0,7 – 0,8	Cukup (Fair)
0,6 – 0,7	Dapat Diterima (Acceptable)
0,5 – 0,6	Gagal (Failed)

2.1.12.3 Statistical Parity (SP)

Statistical Parity (SP) merupakan konsep fairness yang memastikan bahwa probabilitas prediksi positif suatu model sama untuk semua kelompok (H. Zhang dkk., 2021). Pengukuran SP dapat menggunakan Pearson Correlation Coefficient (PCC) dan Mutual Information (MI). PCC adalah tingkat korelasi atribut sensitif dan prediksi, sementara MI adalah ukuran tingkat ketergantungan informasi antara atribut sensitif dan prediksi (Hashim & Yassin, 2023). Nilai Mutual Information (MI) tidak memiliki batas atas tetap dan selalu bernilai ≥ 0, dimana MI yang mendekati 0 menunjukkan ketergantungan informasi yang rendah antara atribut sensitif dan prediksi.

Rentang nilai PCC berkisar antara -1 hingga +1, di mana nilai 0 menunjukkan tidak adanya hubungan linear antara atribut sensitif dan prediksi. Nilai mendekati +1 atau -1 menandakan hubungan linear yang semakin kuat, baik positif maupun negatif. Nilai absolut PCC dan interpretasinya ditunjukkan pada Tabel 2.3 (Schober & Schwarte, 2018).

Tabel 2. 2 Interpretasi Nilai Absolut Koefisien Korelasi

Nilai Absolut Koefisien Korelasi	Interpretasi Korelasi
0,00-0,10	Korelasi dapat diabaikan (Negligible correlation)
0,10-0,39	Korelasi lemah (Weak correlation)
0,40 – 0,69	Korelasi sedang (Moderate correlation)
0,70-0,89	Korelasi kuat (Strong correlation)
0,90 – 1,00	Korelasi sangat kuat (Very strong correlation)

2.2 Penelitian Terkait

2.2.1 State of The Art

Tabel 2. 3 State of The Art

No	Peneliti	Judul	Objek Penelitian	Algoritma	Hasil Penelitian
1	(Iwasaki	Establishment of a predictive	Penanganan right-	Stacked	Hasil penelitian menunjukkan bahwa
	dkk., 2022)	model for GVHD-free, relapse-	censored data dan	Ensemble	stack ensemble dari model Cox-PH dan 7
		free survival after allogeneic	competing risks		algoritma ML (RSF, Dynamic DeepHit,
		HSCT using ensemble learning	untuk prediksi		ADABoost, XGBoost, Extra Tree,
			GRFS pasca allo-		Bagging, dan GB) dengan validasi
			НСТ		menggunakan 5-fold CV menunjukkan C-
					Index untuk GRFS sebesar 0,670.
2	(E. J. Choi	Predicting Long-term Survival	Prediksi	GBM, RF,	Penelitian ini menggunakan Recursive
	dkk., 2022)	After Allogeneic Hematopoietic	kelangsungan	DNN, LR,	Feature Elimination (RFE) untuk seleksi
		Cell Transplantation in	hidup pasien	AdaBoost	fitur, validasi 10-fold CV menemukan
		Patients with Hematologic	pasca allo-HCT		bahwa GBM memiliki performa terbaik
		Malignancies: ML–Based	dalam 5 tahun		dengan AUC-ROC 0,75 dan
		Model Development and			menghasilkan AUC-ROC final sebesar
		Validation			0,788.

No	Peneliti	Judul	Objek Penelitian	Algoritma	Hasil Penelitian
3	(Hernandez	Prediction of Poor Survival	Prediksi OS dan	RSF	Penelitian ini menggunakan
	Boluda dkk.,	after Hematopoietic Cell	NRM pasca		dimensionality reduction, RSF
	2024)	Transplantation in	HSCT untuk		menunjukkan performa yang lebih baik
		Myelofibrosis Using Machine	pasien		dibanding skor CIBMTR dengan Harrel's
		Learning Techniques	myelofibrosis		C-index 0,626 vs. 0,581.
4	(Nadiminti	A novel Iowa-Mayo validated	Prediksi Disease-	Regresi Cox	Penelitian ini mengusulkan metode Cox-
	dkk., 2021)	composite risk assessment tool	Free Survival	Penalized	PH dengan LASSO sebagai teknik
		for allogeneic stem cell	(DFS) dan OS	LASSO	regularisasi, validasi dengan 10-fold CV
		transplantation survival	dalam 2 tahun		menunjukkan C-Index 0,61 untuk DFS
		outcome prediction	pasca allo-HCT		dan 0,62 untuk OS.
5	(Y. Zhou	Longitudinal clinical data	Melibatkan	Naïve	Penggunaan Naïve Bayes pada prediksi
	dkk., 2024)	improve survival prediction	variabel <i>baseline</i>	Bayes	100 hari dengan kombinasi variabel
		after hematopoietic cell	dan data		baseline + data longitudinal menghasilkan
		transplantation using machine	longitudinal		AUC tertinggi sebesar 0,883
		learning	dalam prediksi		
			kelangsungan		
			hidup pasca HCT		

No	Peneliti	Judul	Objek Penelitian	Algoritma	Hasil Penelitian
6	(Shourabiza	Machine Learning for the	Prediksi	RF, KNN,	Penelitian ini menggunakan 5 dataset,
	deh dkk.,	Prediction of Survival Post-	kelangsungan	SVM, DT,	performa terbaik didapatkan oleh RF
	2023)	Allogeneic Hematopoietic Cell	hidup 100 hari	LR, XGB	dengan dataset PMCC menggunakan 45
		Transplantation: A Single-	pasca allo-HCT		variabel, mencapai AUC 0,71.
		Center Experience			
7	(Rouzbahani	Predictive modeling of	Eksplorasi	ST, GB,	Penelitian ini mengembangkan 28 model
	dkk., 2025)	outcomes in acute leukemia	kombinasi	GLMB,	ML, yaitu kombinasi 7 algoritma ML
		patients undergoing allogeneic	algoritma ML	GLMN, CB,	dengan 4 seleksi fitur (UCI, Boruta, MI,
		hematopoietic stem cell	dengan seleksi	RSF,	IBMA), menemukan C-Index terbaik pada
		transplantation using machine	fitur untuk	CoxPH	OS, relapse dan GVHD berada pada
		learning techniques	prediksi OS,		rentang 0,61–0,68.
			relapse, dan		
			GVHD pada		
			pasien leukimia		
			akut pasca allo-		
			НСТ		

No	Peneliti	Judul	Objek Penelitian	Algoritma	Hasil Penelitian					
8	(Meyer dkk.,	Machine Learning Based	Prediksi risiko	DT,	Penelitian ini menggunakan 28 fitur,					
	2024)	Prediction of One Year	mortalitas 1 tahun	AdaBoost,	validasi model menggunakan 10×					
		Mortality after Allogeneic	pasca allo-HCT	GB dan RF	pengulangan 5-Fold nested CV, performa					
		Hematopoietic Cell	untuk mengganti		terbaik dicapai menggunakan RF dengan					
		Transplantation (alloHCT)	skor HCT-CI		AUC 0,77 pada data latih dan 0,79 pada					
		Highlights Importance of Pre-			data uji.					
		Transplant Immunocompetence								
9	(EJ. Choi	Machine Learning-Based	Prediksi	RF, SVM,	Penelitian ini menggunakan RFE sebagai					
	dkk., 2020)	Approach to Predict Survival	kelangsungan	LT, feed	seleksi fitur, validasi model menggunakan					
		after Allogeneic Hematopoietic	hidup pasien	forward NN	10-fold CV menunjukkan bahwa RF					
		Cell Transplantation in	pasca allo-HCT		mencapai kinerja paling baik dengan					
		Hematologic Malignancies			AUC-ROC 0,812 dan akurasi 0,73.					
10	(Wang dkk.,	Machine learning algorithms to	Prediksi risiko	Lasso-	Penelitian ini menggunakan Lasso sebagai					
	2025)	predict heart failure with	Heart Failure with	Logistic,	seleksi fitur dan mengkategorikan variabel					
		preserved ejection fraction	Preserved	XGBoost,	kontinu berdasarkan referensi klinis, hasil					
		among patients with premature	Ejection Fraction	RF, KNN,	dari 5-fold CV menemukan bahwa					
		myocardial infarction	(HFpEF) selama	SVM	XGBoost memberikan performa terbaik					
			rawat inap		dengan AUC 0.854.					

No	Peneliti	Judul	Objek Penelitian	Algoritma	Hasil Penelitian
11	(Gong dkk.,	Application of machine	Prediksi status	GBM,	Penelitian ini menggunakan uji chi-square
	2021)	learning approaches to predict	kelangsungan	XGBoost,	untuk seleksi fitur dan hyperparameter
		the 5-year survival status of	hidup pasien	CatBoost,	tuning dengan Bayesian Optimization,
		patients with esophageal	kanker esofagus	LightGBM,	hasil penelitian menunjukkan fitur
		cancer		GBDT, RF,	lengkap lebih baik, dengan XGBoost pada
				ANN, NB,	5-fold CV mencapai AUC 0,852.
				SVM	
12	(Azar dkk.,	Application of machine	Memprediksi	KNN,	Penelitian ini menggunakan Grid Search
	2022)	learning techniques	kelangsungan	SVM, DT,	untuk pemilihan hyperparameter, hasil 5-
		for predicting survival in	hidup pasien	RF,	fold CV menunjukkan bahwa RF
		ovarian cancer	kanker ovarium	AdaBoost,	mencapai AUC tertinggi sebesar 82,38.
				XGBoost	
13	(Abdollahza	Predictive models for post-liver	Prediksi	DT, RF, LR,	Penelitian ini menemukan bahwa DT
	de dkk.,	transplant survival using	kelangsungan	GaussianN	memberikan hasil terbaik dalam seleksi
	2025)	machine learning techniques in	hidup pasien	В,	fitur, dimana GaussianNB mencapai
		three critical time intervals	pasca	dan LDA	performa terbaik pada survival 1 tahun
			transplantasi hati		dengan AUC 0,61, sensitivitas 0.98, dan
					F1-score 0.89

No	Peneliti	Judul	Objek Penelitian	Algoritma	Hasil Penelitian
14	(Ayers dkk.,	Using machine learning to	Prediksi	RF, DNN,	Hasil penelitian menunjukkan bahwa
	2021)	improve survival prediction	kelangsungan	LR dan	model LR konvensional memiliki AUC-
		afterheart transplantation	hidup 1 tahun	AdaBoost	ROC 0,649, sementara ensamble model
			pasca orthotopic		mencapai AUROC 0,764
			heart		
			transplantation		
			(OHT)		
15	(Alkhadar	Comparison of machine	Komparasi	LR, KNN,	Penelitian ini menggunakan 9 variabel
	dkk., 2021)	learning algorithms for the	algoritma ML	Naïve	dengan k-fold CV, mendapatkan performa
		prediction of five-year survival	dalam prediksi	Bayes, DT,	terbaik pada DT dengan akurasi 76% dan
		in oral squamous cell	kelangsungan	RF	AUC-ROC 0,77, model kedua terbaik
		carcinoma	hidup 5 tahun		pada LR dengan akurasi 60% dan ROC-
			pasien OSCC		AUC 0,69.

Tabel 2.3 merangkum berbagai penelitian terkait dengan penelitian yang dilakukan. *Ensemble learning* telah banyak digunakan oleh penelitian sebelumnya untuk prediksi kelangsungan hidup, meliputi model ML tunggal, metode *bagging* (seperti *Random Forest*), metode *boosting* (seperti GBM, LightGBM, XGBoost, dan AdaBoost) serta metode *stacking* dengan kombinasi berbagai model. Naïve Bayes mencapai AUC tertinggi pada penelitian terkait dengan AUC 0,883 (Y. Zhou dkk., 2024), diikuti oleh XGBoost - AUC 0,854 pada prediksi HFpEF (Wang dkk., 2025), dan AUC 0,852 pada prediksi untuk kanker esofagus (Gong dkk., 2021). Evaluasi dengan C-Index menunjukkan penggunaan *ensemble* untuk model Cox-PH dan 7 algoritma ML menghasilkan nilai tertinggi 0,670 (Iwasaki dkk., 2022).

Mengacu pada temuan dalam penelitian sebelumnya, penelitian ini akan membuat model berbasis *bagging* dan *boosting* untuk prediksi kelangsungan hidup pasien pasca allo-HCT. Hyperparameter tuning digunakan untuk mendapatkan kombinasi *hyperparameter* yang optimal. Selain mengupayakan performa kompetitif, penelitian ini juga memberikan perhatian khusus terhadap aspek *fairness* melalui penerapan teknik *fairness regression*.

2.2.2 Matriks Penelitian

Tabel 2. 4 Matriks Penelitian

		Ruang Lingkup										
			er			Algoritma Eva					Evaluasi	
No	Penulis	Seleksi Fitur	Hyperparameter Tuning	FaiReg	Bagging	Boosting	Stacking	Lainnya	Cross Validation	C-Index	AUC-ROC	Akurasi
1	(Iwasaki dkk., 2022)	-	-	-	✓	✓	✓	✓	✓	√	-	-
2	(E. J. Choi dkk., 2022)	√	-	-	✓	✓	-	✓	✓	-	✓	-
3	(Hernandez Boluda dkk., 2024)	✓	-	-	√	-	-	-	-	√	-	-
4	(Nadiminti dkk., 2021)	✓	-	-	-	-	-	✓	<	\	-	-
5	(Y. Zhou dkk., 2024)	✓	-	-	1	1	-	✓	-	1	✓	-
6	(Shourabizadeh dkk., 2023)	✓	-	-	>	>	-	✓	✓	1	✓	-
7	(Rouzbahani dkk., 2025)	✓	-	-	\	✓	-	✓	<	\	-	-
8	(Meyer dkk., 2024)	-	-	-	√	√	-	-	✓	1	✓	-
9	(EJ. Choi dkk., 2020)	✓	-	-	\	-	-	✓	✓	-	✓	✓
10	(Wang dkk., 2025)	✓	-	-	>	>	-	✓	✓	1	✓	-
11	(Gong dkk., 2021)	✓	✓	-	\	\	-	√	✓	1	✓	-
12	(Sorayaie Azar dkk., 2022)	-	✓	-	>	>	-	✓	✓	1	✓	-
13	(Abdollahzade dkk., 2025)	✓	-	-	√	-	-	✓	✓	1	✓	-
14	(Ayers dkk., 2021)	✓	-	-	√	√	✓	✓	-	-	✓	-
15	(Alkhadar dkk., 2021)	✓	-	-	√	-	-	✓	✓	1	✓	✓
16	Our Research	-	✓	✓	√	✓	-	-	✓	√	✓	-

Tabel 2.4 merupakan matriks penelitian yang terkait dengan penelitian yang akan dilakukan. Penelitian ini berfokus pada penggunaan *ensemble learning* untuk prediksi survival dan teknik *fairness regression* untuk kinerja model yang lebih adil. Matriks penelitian digunakan untuk memberikan rincian mengenai perbedaan antara penelitian yang dilakukan, dengan penelitian sebelumnya.

Berdasarkan matriks penelitian pada Tabel 2.2, penelitian ini akan melakukan prediksi kelangsungan hidup pasien pasca allo-HCT dengan ensemble learning serta menerapkan teknik fairness regression. Metode bagging dan boosting diambil sebagai metode pengembangan model dengan merujuk pada penelitian sebelumnya yang hampir selalu menyertakan kedua metode tersebut. Hasil dari penelitian sebelumnya menunjukkan bahwa meskipun akurasi model cukup tinggi, masih terdapat potensi ketidakadilan dalam prediksi terhadap kelompok ras. Hal ini menunjukkan bahwa tanpa penerapan teknik fairness regression, model dapat berperforma baik secara teknis tetapi tetap menyisakan isu fairness yang belum terselesaikan. Perbedaan antara penelitian yang dilakukan dengan penelitian sebelumnya terletak pada penerapan teknik fairness regression dalam mencapai keadilan model. Hyperparameter tuning dilakukan untuk mendapatkan kombinasi hyperparameter yang optimal. Penggunaan crossvalidation juga diterapkan untuk memastikan performa model pada data yang belum pernah dilihat sebelumnya.