BAB II TINJAUAN PUSTAKA

2.1. Landasan Teori

2.1.1. Prediksi

Prediksi merupakan proses untuk memperkirakan kejadian di masa depan berdasarkan pola atau preferensi dari data historis, yang bertujuan untuk mendukung pengambilan keputusan di berbagai bidang. Proses ini dilakukan melalui pengumpulan data historis, yang dapat diperoleh dari berbagai sumber seperti basis data (*database*) maupun repositori (Rahayu, 2023).

Prediksi harga dengan dibantu menggunkan algoritma *machine learning* dapat membantu dalam membuat sebuah keputusan. Perusahaan dalam memprediksi harga produk tidak dapat dilakukan dengan hanya perkiraan semata. *Machine Learning* mampu membantu dalam menentukan harga produk dengan menggunakan algoritma yang mempunyai akurasi yang akurat.

2.1.2. Tren Harga

Secara umum, prediksi tren harga merupakan teknik analisis yang memanfaatkan data historis untuk memperkirakan pergerakan harga di masa mendatang. Pendekatan ini dilakukan secara sistematis dengan dasar data relevan dari periode sebelumnya, sehingga diharapkan mampu memberikan tingkat objektivitas yang lebih tinggi dalam menghasilkan proyeksi harga di masa depan (Rozi et al., 2023).

2.1.3. Hubungan Tren Harga dengan Supermarket

Mengidentifikasi pola tren harga, supermarket dapat mendapatkan wawasan penting mengenai periode penjualan produk. Tren harga merupakan perubahan terhadap harga produk yang secara signifikan tidak dapat ditebak. Maka dari itu supermarket menerapkan harga awal dan secara otomatis nantinya menyesuaikan berdasarkan reaksi dan tren yang diperoleh dari pelanggan (Algoritma, 2024).

Prediksi harga produk dilakukan dengan melihat tren harga historis serta membandingkannya dengan harga produk serupa di toko pembanding. Pendekatan ini bertujuan untuk mengidentifikasi pola harga yang relevan dan membantu menghasilkan prediksi yang lebih akurat untuk tiga hari kedepan. Dengan memanfaatkan data harga dari toko lain sebagai acuan, supermarket dapat menyesuaikan strategi harga secara lebih kompetitif di pasar.

2.1.4. Rekomendasi Produk

Rekomendasi produk adalah memberikan rekomendasi produk yang akan dipilih berdasarkan prefrensi masa lalu, riwayat pembelian, dan informasi (Yaya Suharya et al., 2021). Sistem rekomendasi sendiri dibagi menjadi tiga tipe, yaitu *Content-Based-Filtering*, *Collaborative Filtering*, dan *Item-Based Filtering* (Suhailah & Hartatik, 2023).

A. Content-Based-Filtering

Content-Based-Filtering memberikan rekomendasi produk yang sesuai dengan historis produk yang disukai sebelumnya.

B. Collaborative Filterings

Collaborative Filtering dalam sistem rekomendasi merupakan salah satu metode yang memanfaatkan informasi dari pengguna yang berupa nilai terhadap produk.

C. Item-Based Filtering

Item-Based Filtering memberikan rekomendasi kepada pengguna lain berdasarkan nilai kemiripan *item* atau produk yang dihitung berdasarkan nilai peringkat yang diberukan pengguna.

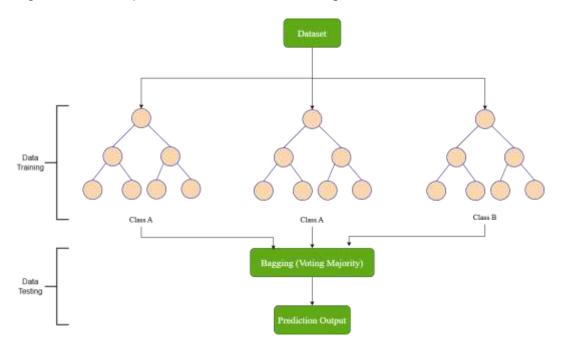
2.1.5. Machine learning

Machine learning merupakan salah satu cabang dari ilmu komputer yang berfokus pada pengembangan kemampuan mesin untuk belajar secara cerdas dari data. Salah satu metode dalam machine learning adalah concept learning, yaitu pendekatan yang termasuk dalam kategori supervised learning karena memerlukan data latih yang mencakup contoh positif maupun negatif (Muhammad et al., 2023). Machine learning mampu membantu membuat keputusan khususnya dalam memprediksi harga agar lebih akurat dikarenakan berbagai model yang mempunya akurasi cukup akurat. Pada penelitian ini pendekatan machine learning yang digunakan diantaranya model Random Forest, XGBoost, Gradient Boosting, Decision Tree dan Regresi Linear.

A. Random Forest

Random Forest merupakan metode ensemble yang memanfaatkan sejumlah pohon keputusan untuk melakukan prediksi, dengan membangun beberapa pohon selama proses pelatihan dan menghasilkan prediksi akhir berupa rata-rata

dari seluruh pohon pada kasus regresi (Aditya et al., 2024). Cara kerja dari algoritma *random forest* sendiri di visualisasikan pada Gambar 2.1.



Gambar 2. 1 Algoritma Random Forest (Aditya et al., 2024)

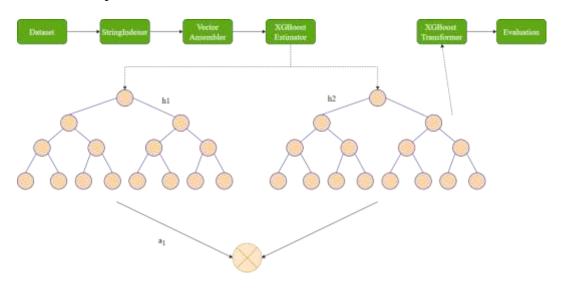
Pada Gambar 2.1, secara garis besar cara kerja algoritma *random forest* diantaranya:

- 1) Membagi dataset menjadi beberapa subset menggunakan *boostrap* sampling atau membagi dataset menjadi data train dan test.
- 2) Pada data training setiap subset digunakan untuk melatih sebuah decision tree, dan hanya sebagian fitur yang dipilih secara acak untuk setiap split. Hal ini akan membantu dalam mengurangi overfitting dengan membuat setiap tree beragam.
- 3) Setelah semua *tree* terlatih, *tree* tersebut akan digunakan untuk melakukan prediksi. Untuk masalah klasifikasi, akan dipilih variabel atau kelas mana

- yang memiliki suara terbanyak (*voting majority*). Kemudian untuk masalah regresi, rata-rata semua *tree* digunakan sebagai hasil akhir.
- 4) Hasil akhir dari proses agregasi prediksi dari semua *decission tree*, yang menghasilkan prediksi yang lebih stabil dan akurat dibandingkan hanya menggunakan satu decission tree.

B. XGBoost

XGBoost adalah versi yang disempurnakan dari Gradient Boosting, dengan kemampuan lebih tinggi dalam menyelesaikan tugas regresi dan klasifikasi melalui pendekatan Gradient Boosting (Andriansyah, 2023). Cara kerja dari algoritma XGBoost di visualiasikan pada Gambar 2.2.



Gambar 2. 2 Algoritma XGBoost (Andriansyah, 2023)

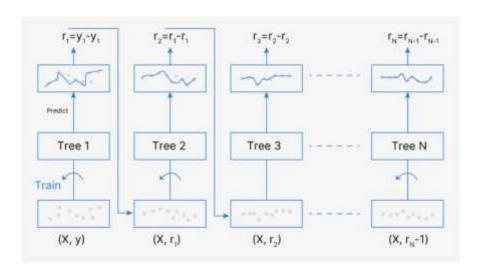
Pada Gambar 2.2, alur dari algoritma *XGBoost*, sebagai berikut:

1) Dataset: Dataset di inputkan ke sistem.

- StringIndexer: Data kategorikal dalam dataset diubah menjadi format numerik. Langkah ini penting agar data bisa diproses oleh pendekatan machine learning.
- 3) VectorAssembler: Fitur-fitur numerik digabungkan ke dalam suatu vektor.
 Vektor ini menjadi representasi tunggal dari data yang akan digunakan untuk pelatihan model.
- 4) XGBoost Estimator: Setelah data diubah menjadi format vektor, data diberikan ke XGBoost Estimator, yang dimana pada bagian ini melatih model XGBoost berdasarkan tree yang telah di bentuk.
- 5) XGBoost Transormer: Setelah model terlatih, kemudian akan digunakan sebagai transformer untuk menerapkan prediksi pada data baru.
- 6) Evaluation: Hasil prediksi dari transformer dievaluasi menggunakan matrix evaluasi tertentu untuk menilai kinerja model.

C. Gradient Boosting

Gradient Boosting adalah salah satu metode ensemble learning untuk melakukan prediksi, metode ini cocok digunakan pada data yang sangat besar (Septian, 2023). Untuk gambaran proses Gradient Boosting dapat dilihat pada Gambar 3.



Gambar 2. 3 Algoritma *Gradient Boosting* (Septian, 2023)

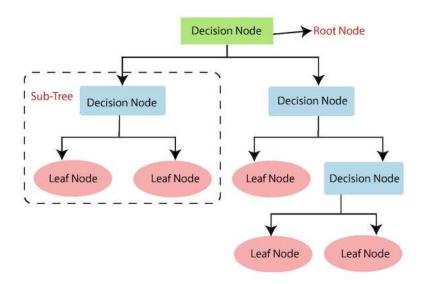
Pada Gambar 2.3, menjelaskan gambaran dari alur algoritma *gradient boosting* diantaranya:

- 1) Inisialiasasi Model (*Tree* 1): *Gradient Boosting* dimulai dengan melatih *tree* 1 pada dataset awal (X, y). Model pertama mencoba memprediksi target y berdasarkan fitur X. Setelah model mempredisi (-y₁), residu (r₁) dihitung sebagai selisih antara nilai aktual (y₁) dan predisi awal (-y₁).
- 2) Model Kedua (*Tree* 2): Model *Tree* 2 dilatih untuk mempelajari residu (r₁) dari model pertama. Prediksi dari *Tree* 2 menghasilkan residu baru (r₂) dengan menghitung selisih antara residu sebelumnya (r₁) dan prediksi model kedua (-r₁).
- 3) Iterasi *Tree* 3 hingga *Tree* N: Proses ini diulangi untuk model berikutnya. Setiap model dilatih pada residu yang tersisa dari model sebelumnya. Residu baru dihitung pada setiap iterasi, *residual learning* ini memastikan bahwa setiap model bertugas untuk memperbaiki kesalahan dari model sebelumnya.

- 4) *Tree N*: Pada model terakhir (*Tree N*), residu akhir (r_N) dihitung. Proses ini akan berhenti ketika jumlah *tree* telah menapai batas tertentu atau ketika residu sudah cukup kecil.
- 5) Kombinasi prediksi: Dengan mengkombinasikan semua *tree* yang telah dilatih. Bobot kontribusi setiap *tree* dapat diatur menggunakan faktor *learning rate*.

D. Decision Tree

Decision Tree merupakan salah satu algoritma dalam machine learning yang digunakan untuk membangun model klasifikasi dan regresi dalam bentuk struktur pohon. Pendekatan ini memungkinkan interpretasi proses pengambilan keputusan secara terstruktur, bertahap, dan rasional, sehingga mendukung prediksi terhadap data di masa depan (Nurani et al., 2023). Gambaran visualisasi decision tree dapat dilihat pada Gambar 2.4.



Gambar 2. 4 Algoritma Decision Tree (Nurani et al., 2023)

Pada Gambar 2.4, merupakan elemen-elemen yang terdapat pada algoritma *decision tree*, diantaranya:

- 1) Root node (node akar): Node pertama dalam pohon, digunakan untuk membagi dataset berdasarkan fitur tertentu. Keputusan pertama dibuat di node ini, yang kemudian mengarahkan data ke node berikutnya.
- 2) Decision node (node keputusan): Node bercabang, node ini mewakili tes atau keputusan berdasarkan fitur dataset. Setiap cabang dari node keputusan mengarah ke sub-node, yang bisa berupa leaf node atau node keputusan lainnya.
- 3) Leaf node (node daun): node akhir pada pohon, node ini tidak bercabang lebih lanjut dan mewakili keputusan atau hasil akhir. Dalam klasifikasi, leaf node berisi label kelas, sedangkan dalam regresi, leaf node berisi nilai numerik.
- 4) Sub-*Tree* (Sub-Pohon): Bagian dari pohon keputusan yang merupakan cabang dari *root node*. Sub-*tree* ini dianggap sebagi pohon keputusan kecil yang berdiri sendiri.

Untuk proses alur algoritma *decision tree*, dimulai dari *root node*, kemudian dibagi secara berulang melalui *decision nodes* berdasarkan kriteria tertentu. Proses berlanjut sampai mencapai *leaf node*, dimana keputusan akhir dibuat.

E. Regresi Linear

Regresi linear merupakan metode analisis statistik yang digunakan untuk mempelajari hubungan antara satu variabel *independen* dan satu variabel *dependen* (Andriani et al., 2023). Metode ini berguna untuk menguji sejauh

mana variabel independen (X) memengaruhi variabel dependen (Y) dalam konteks hubungan sebab-akibat. Pada persamaan prediksi (2.1), konstanta (2.2), dan koefisien (2.3) *regresi linier* adalah sebagai berikut:

Prediksi:

$$Y = a + bX \tag{2.1}$$

Konstanta:

$$a = \frac{(\sum Y)(\sum X^2) - (\sum X)(\sum XY)}{n \sum X^2 - (\sum X)^2}$$
(2. 2)

Koefisien:

$$b = \frac{n\sum XY - (\sum X)\sum Y}{n\sum X^2 - (\sum X)^2}$$
 (2.3)

Keterangan:

Y = Variabel dependen (variabel terikat).

X = Variabel independen (variabel bebas).

a = Konstanta (nilai dari Y apabila X = 0).

b = Koefisien regresi (pengaruh positif atau negatif).

Alur dari algoritma regresi linier diantaranya sebagai berikut:

- Mengumpukan data: Kumpulkan pasangan data X (independen) dan Y (dependen).
- 2) Menghitung parameter a dan b: untuk menghitung parameter a menggunakan rumus parameter 2 dan untuk menghitung parameter b menggunakan rumus parameter 3.

- 3) Membentuk persamaan *linear*: setelah nilai a dan b diketahui, bentuk persamaan linear pada rumus persamaan 1.
- 4) Melakukan prediksi: Masukkan nilai X kedalam persamaan Y.
- 5) Evaluasi model: Bandingkan nilai Y prediksi (\hat{Y}) dengan nilai aktual Y untuk mengavaluasi keakuratan model.

2.1.6. Feature Importance

Feature importance merupakan teknik yang digunakan untuk menilai tingkat kontribusi masing-masing fitur dalam proses prediksi model, sehingga memungkinkan identifikasi fitur-fitur yang paling relevan dan signifikan (Hamid Rahman, Ramdani Agusman, 2024).

Pengujian variabel untuk mengecek korelasi antara variabel target dan variabel yang mempengaruhi dibantu dengan *heatmap*. Variabel yang mempunyai nilai pengujian <0.01, maka variabel tersebut disarankan untuk dilakukan penghapusan, dikarenakan tidak adanya korelasi terhadap variabel target sehingga tidak akan mempengaruhi hasil akurasi.

2.1.7. Feature Selection

Pemilihan fitur atau variabel dalam dataset bertujuan untuk mengurangi beban komputasi. Proses ini merupakan bagian penting dalam *machine learning* karena dalam beberapa kasus, sebuah dataset mungkin mengandung banyak fitur yang tidak relevan, yang dapat mempengaruhi akurasi algoritma secara *negative* (Sudarman & Budi, 2023).

Proses sebelumnya dalam pengujian variabel menggunakan feature importance, tahapan selanjutnya yaitu dengan memilih fitur berdasarkan hasil dari pengujian feature importance yang mengambil fitur-fitur yang mempunyai nilai tinggi berdasarkan hasil pengujian untuk meningkatkan performa model, pada model yang mempunyai akurasi awal terbaik.

2.1.8. Matrix Evaluation

Matrix evaluation bertujuan untuk mengevaluasi performa model terhadap hasil akurasi prediksi (Edris Effendi et al., 2023). Pada penelitian ini digunakan beberapa *matrix evaluation* diantaranya:

A. R-Squared

R-Squared digunakan untuk mengukur keefektifan seberapa akurat algoritma tersebut dalam memprediksi (Rosita & Moonlight, 2024). Pada persamaan *R-Squared* (2.4):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})}$$
(2.4)

Keterangan:

y = nilai aktual

-y = nilai perkiraan

n = nilai aktual

i = indeks data

Tabel 2.1 menunjukkan rentang nilain R², angka yang berkisar 0 sampai 1 mengindikasikan besar kombinasi variabel independen secara bersama-sama mempengaruhi nilai variabel independen (Nurani et al., 2023).

Tabel 2. 1 Rentang Nilai R²

Interval Koefisien	Hubungan	
1 – 0,8	Sangat kuat	
0,6 – 0,79	Kuat	
0,4 – 0,59	Cukup kuat	
0,2 - 0,39	Lemah	
0 – 0,19	Sangat lemah	

B. Mean Absolute Percenage Error (MAPE)

Mean Abolute Percentage Error (MAPE) dapat membantu mengukur kesalahan dalam prediksi (Triya et al., 2024). Pada persamaan MAPE (2.5):

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{|y_i - \hat{y}_i|}{y_i} x100 \right)$$
 (2.5)

Keterangan:

y = nilai aktual

-y = nilai perkiraan

n = nilai aktual

i = indeks data

Semakin kecil nilai *Mean Absolute Percentage Error* (MAPE), maka semakin tinggi tingkat akurasi dari hasil peramalan. Tabel 2.2 menunjukkan rentang interpretasi nilai MAPE, di mana MAPE kurang dari 10% dikategorikan sebagai prediksi dengan tingkat akurasi sangat baik. Nilai MAPE antara 10% hingga 20% menunjukkan akurasi yang baik, sedangkan nilai antara 20% hingga 50% mencerminkan tingkat akurasi yang cukup. Sementara itu, nilai MAPE yang melebihi 50% menunjukkan bahwa tingkat akurasi prediksi tergolong buruk (Nurani et al., 2023).

Tabel 2. 2 Rentang Nilai MAPE

Nilai MAPE	Akurasi Prediksi	
<10%	Sangat baik	
10% - 20%	Baik	
20% - 50%	Cukup	
>50%	Buruk	

C. Root Mean Squared Error (RMSE)

Root Mean Squared Error mempunyai fungsi untuk mengevaluasi seberapa baik model yang digunakan dalam memprediksi (Rosita & Moonlight, 2024). Pada persamaan RMSE (2.6):

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|}$$
 (2.6)

Keterangan:

y = nilai aktual

-y = nilai perkiraan

n = nilai aktual

i = indeks data

2.2. State-of-the-Art

Terdapat beberapa penelitian yang signifikan menggunakan berbagai pendekatan untuk melakukan prediksi harga dan juga merekomendasikan sebuah produk. Kontribusi penting dari penelitian-penelitian tersebut terletak pada pemahaman dan faktor-faktor yang mempengaruhi terhadap prediksi harga produk. Pada penelitian sebelumnya memiliki potensi untuk menjadi dasar penting dalam pengembangan metode prediksi untuk meningkatkan hasil akurasi yang lebih akurat. Berikut Tabel 2.3 mengenai penelitian terkait yang menjadi landasan dalam penelitian ini.

Tabel 2. 3 State-of-The-Art

No	Nama Peneliti/Journal		Hasil Penelitian		
	Peneliti (tahun)	(Warjiyono et al., 2024)	Penelitian ini menggunakan algoritma Random Forest untuk		
		Analisa Prediksi Harga Jual Rumah	memprediksi harga rumah berdasarkan dataset dari Kaggle.		
1	Judul	Menggunakan Algoritma Random	Variabel dependen adalah harga rumah, sementara variabel		
1		Forest Machine learning	independen meliputi luas tanah, luas bangunan, jumlah kamar tid		
	Algoritma/Metode	Random Forest	jumlah kamar mandi, garasi, dan kota. Model Random Forest		
	rigoritina/Netouc Random 1 orest		menghasilkan akurasi sebesar 75,10%.		
2	Peneliti (tahun) (Radithya et al., 2024)				

	Judul	Prediksi Target Penjualan Mobil Menggunakan <i>Decision Tree</i>	.Penelitian ini menggunakan algoritma <i>Decision Tree</i> untuk memprediksi target penjualan. Untuk meningkatkan performa
	Algoritma/Metode	Decision Tree + Feature Scaling	model dibantu dengan metode <i>feature scalling</i> , dan mendapatkan akurasi 91%.
	Peneliti (tahun)	(Hidayah et al., 2024)	Penelitian ini menggunakan dataset dari paket MASS di RStudio
3	Judul	Menggunakan Metode Linear Regression, SVR, Decision Tree, Random Forest Regression	dengan 7.048 data dan 14 variabel, dibagi menjadi 70% data training dan 30% data testing. Model <i>Regresi Linear</i> menghasilkan R ² sebesar 0.71 dan RMSE sebesar 4.64%, model SVR mencapai R ² sebesar 0.80 dan RMSE sebesar 3.83%, model <i>Decision Tree</i> memiliki R ² sebesar 0.59 dan RMSE sebesar 5.49%, sedangkan
	Algoritma/Metode	Regresi Linear, SVR, Decision Tree, Random Forest	model <i>Random Forest</i> menunjukkan performa terbaik dengan R ² sebesar 0.86 dan RMSE sebesar 3.20%. Disarankan untuk penelitian selanjutnya menggunakan pembagian data 80:20 untuk meningkatkan akurasi.
	Peneliti (tahun)	(Simamora et al., 2024)	Berdasarkan hasil kutipan pada penelitian untuk meningkatkan
4	Judul	PeningkatandanOptimalisasiPrediksiHargaEmasMenggunakanMetodecombine	hasil akurasi prediksi harga emas dengan menggabungkan algoritma <i>random forest</i> dan <i>gradient boosting</i> , variabel yang ada pada dataset diantaranya terdapat 7 variabel. Untuk hasil akurasi

		Machine learning Random Forest	dari penggabungan kedua algoritma ini yaitu mendapatkan nilai	
		dan Gradient Boosting	RMSE 0.07%.	
	Algoritma/Metode	Random Forest dan Gradient Boosting		
	Peneliti (tahun)	(Yanisa Putri et al., 2024)	Penelitian ini menggunakan data dari website FemaleDaily untuk	
5	Judul	Sistem Rekomendasi Skincare Menggunakan Metode Content Based Filtering dan Coolaborative Filtering	membangun sistem rekomendasi produk. Model <i>Content-Based Filtering</i> tidak memerlukan data dari pengguna, sedangkan <i>Collaborative Filtering</i> bergantung pada ulasan pengguna. Hasil akurasi menunjukkan bahwa <i>Content-Based Filtering</i> memiliki	
	Algoritma/Metode	Content-Based Filtering dan Collaborative Filtering	skor akurasi tinggi sebesar 80%, sementara <i>Collaborative Filtering</i> hanya mencapai skor 20%.	
	Peneliti (tahun)	(Sari et al., 2024)		
6	Judul	Implementasi <i>Machine learning</i> untuk Prediksi Harga Laptop Menggunakan Algoritma Regresi Linear Berganda	Penelitian ini menggunakan dataset dari <i>Kaggle</i> dengan variabel harga laptop dan spesifikasi untuk mengimplementasikan model <i>regresi linear</i> . Hasil evaluasi menunjukkan nilai R² sebesar 0.68% dan <i>Mean Absolute Error</i> (MAE) sebesar 0.18. Pengembangan	
	Algoritma/Metode	Algoritma <i>Regresi Linear</i> Berganda.	lebih lanjut disarankan dengan memperluas validasi model.	

	Peneliti (tahun)	(Radithya et al., 2024)	Pada penelitian ini, data yang digunakan diambil dari dataset yang	
l _	T J1	Prediksi Target Penjualan Mobil	telah tersedia di platform pembelajaran Udemy. Untuk variabel	
7	Judul	Menggunakan Decision Tree	yang digunakan pada prediksi target penjualan menggunakan decision tree ini yaitu berdasarkan profil dan penghasilan. Untuk	
	Algoritma/Metode	Decision Tree	hasil akurasi pada prediksi target penjualan sebesar 91%.	
	Peneliti (tahun)	(Nasyuli et al., 2023)	Penelitian ini menggunakan dataset dari Kaggle untuk	
		Penerapan Model Machine	mengimplementasikan model Gradient Boosting dan Linear	
		learning Algoritma Gradient	Regression dalam memprediksi harga mobil. Prosesnya melibatkan	
8	Judul	Boosting dan Linear Regression	encoding menggunakan Linear Regression, diikuti evaluasi dengan	
0		Melakukan Prediksi Harga	Gradient Boosting yang menghasilkan akurasi RMSE sebesar	
		Kendaran Bekas	5.81% dan MAPE sebesar 7.5%. Pengembangan penelitian	
		Gradient Boosting dan Linear	selanjutnya disarankan dengan menambahkan beberapa variabe	
	Algoritma/Metode Regression		lain.	
	Peneliti (tahun)	(Wijaya et al., 2024)	Penelitian ini menggunakan dataset publik dari Kaggle dan	
		Meningkatkan Prediksi Penjualan	mengoptimasi model XGBoost dengan kombinasi Random Search	
9	T J1	Retail Xyz Dengan Teknik	untuk meningkatkan akurasi prediksi. Hasil akurasi menunjukkan	
	Judul	Optimasi Random Search Pada	nilai R ² sebesar 97,2%, MSE sebesar 30,9%, dan MAE sebesar	
		Model XGBoost	10,2%. Namun, hasil tersebut dianggap kurang efektif karena	

	Algoritma/Metode	XGBoost dan Random Search	teknik optimasi terbatas pada Random Search dan dataset yang		
)		kurang variatif		
	Peneliti (tahun)	(Tamami & Arifin, 2024)	Penelitian ini menggunakan dataset penjualan tahunan dari Kaggle		
		Penggunaan LSTM dalam	dengan pembagian data 80% untuk <i>training</i> dan 20% untuk <i>testing</i> .		
	Judul	Membangun Prediksi Penjualan	Variabel yang digunakan adalah tanggal (date) dan penjualan		
		Untuk Aplikasi Laptop Lens	(sales). Model Long Short-Term Memory (LSTM) menghasilkan		
10			akurasi untuk kategori Low-End dengan MSE sebesar 83.3%,		
			RMSE sebesar 91.2%, dan R ² sebesar 0.82%; kategori <i>Mid-End</i>		
	Algoritma/Metode	Long Short-Term Memory	dengan MSE sebesar 50.1%, RMSE sebesar 22.3%, dan R2 sebesar		
			0.98%; serta kategori High-End dengan MSE sebesar 93.7%,		
			RMSE sebesar 96.8%, dan R ² sebesar 0.84%.		
	Peneliti (tahun)	(Rayhan Rizal Mahendra et al.,	Penelitian ini bertujuan mengimplementasikan metode Item-Based		
		2024)	Collaborative Filtering pada dataset rekomendasi produk. Dataset		
		Implementasi Item-Based	yang digunakan berasal dari <i>Kaggle</i> , berupa data toko <i>e-commerce</i>		
11	Judul	Collaborative Filtering Untuk	dengan total 100.000 data yang mencakup user ID, movie ID, dan		
		Rekomendasi Film	rating. Hasil evaluasi model menunjukkan performa yang baik		
	Alexander - Duranda Callahamatina Eilamina		berdasarkan matriks MAE dan RMSE, namun disarankan untuk		
	Algoritma/Metode	Collaborative Filtering	menggunakan pendekatan metode lain guna meningkatkan hasil.		
12	Peneliti (tahun)	(Nuris, 2024)			

		Analisis Prediksi Harga Rumah	Berdasarkan kutipan penelitian analisis prediksi harga rumah, data
	7 1 1	Pada Machine learning	yang diperoleh bersumber dari rumah123.com dengan total data
	Judul	Menggunakan Metode Regresi	361. Variabel yang digunakan dalam pengimplementasian
		Linear	algoritma regresi linear yaitu luas tanah dan harga jual rumah.
	Algoritms/Motodo	Pagnagi Linagn	Didaptkan hasil akurasi dari model ini yaitu MSE 46.4%, R ² 0.78
	Algoritma/Metode	Regresi Linear	%, MAE 31.3 %.
	Peneliti (tahun)	(Negara & Mardiansyah, 2024)	Penelitian ini membagi dataset menjadi dua bagian, yaitu 80%
		Implementasi Machine learning	untuk data train dan 20% untuk data test. Hasil implementasi kedua
		Dengan Metode Collaborative	model menunjukkan bahwa Content-Based Filtering menggunakan
13	Judul	Filtering Dan Content-Based	teknik bag of words dan cosine similarity memberikan hasil yang
13		Filtering Pada Aplikasi Mobile memadai untuk halaman detail tempat wisata. Sementara itu,	
		Travel (Bangkit Academy)	Collaborative Filtering berhasil memberikan hasil memuaskan
	Almoniano (Matada	Collaborative Filtering dan	dengan nilai error yang rendah pada data train dan data test, yaitu
	Algoritma/Metode	Content-Based Filtering	0.1162 dan 0.1215 secara berturut-turut.
	Peneliti (tahun)	(Nouvalina & Hati, 2024)	Penelitian ini menggunakan dataset hasil web scraping dari
		Sistem Rekomendasi Produk Skin	berbagai website brand kosmetik dengan total lebih dari 1200
14	To Jost	Care Berdasarkan Permasalahan	produk skin care. Metode Content-Based Filtering diterapkan
	Judul	Kulit Wajah Dengan Metode	dalam sistem rekomendasi tanpa feedback, menggunakan TF-IDF
		Content Based Filtering	dan Cosine Similarity. Hasil rekomendasi menunjukkan bahwa

	Algoritma/Metode	Content Based Filtering	sistem mampu memberikan produk yang sesuai dengan kebutuhar konsumen.	
	Peneliti (tahun)	(Saputro & Amin, 2024)	Penelitian ini bertujuan memberikan rekomendasi produk skincare	
		Sistem Rekomendasi Content-	face wash pria yang mirip dengan produk yang biasanya digunakan.	
	Judul	Based Filtering Skincare Prie di E-	Data yang digunakan bersumber dari official store di e-commerce	
15		Commerce Shopee	Shopee, terdiri dari 15 produk dari berbagai merek. Hasil dari model	
			Content-Based Filtering menunjukkan nilai similaritas 0,5611,	
	Algoritma/Metode	Content-Based Filtering	yang menunjukkan bahwa Scarlet Whitening Facial Wash adalah	
			produk dengan akurasi tertinggi dibandingkan produk lainnya.	
	Peneliti (tahun)	(Oktavian & Amin, 2023)	Penelitian ini menggunakan dataset yang diperoleh melalui web	
		Perancangan Sistem Rekomendasi	scraping dari website Els Computer Shop, dengan tujuan	
		Laptop dengan Model Prototyping	memberikan tiga rekomendasi laptop menggunakan metode	
	Judul	dan Penerapan Content-Based	Content-Based Filtering berdasarkan perhitungan cosine similarity.	
16		Filtering Approach pada ELS	Hasil dari metode ini cukup baik, menghasilkan tiga rekomendasi	
		Computer Shop Semarang	laptop berdasarkan indeks kemiripan. Namun, untuk penelitian	
			selanjutnya, disarankan untuk menggunakan dataset yang lebih	
	Algoritma/Metode	Content-Based Filtering	besar agar implementasi model Content-Based Filtering dapat lebih	
			maksimal, karena penelitian ini hanya menggunakan 20 data laptop.	
17	Peneliti (tahun)	(Madani et al., 2024)		

	Judul	Sistem Rekomendasi Musik	Berdasarkan hasil kutipan pada penelitian ini, dataset ini memiliki		
	Juuui	Menggunakan Machine learning	data sebanyak 2391 data. Tujuan dari penelitian ini yaitu		
			memberikan rekomendasi musik kepada pengguna berdasarkan		
			prefensi dari pengguna itu sendiri. Untuk hasil akurasi		
	Algoritma/Matoda	Collaborative Filtering	menggunakan model Collaborative Filtering dapat memberikan		
	Aigortima/Wictouc	Condoordiive Tinering	rekomendasi yang akurat dan relevan bagi pengguna, yang		
			ditunjukkan dari hasil akurasi mendapatkan nilai MAE dan RMSE		
			yang rendah.		
	Peneliti (tahun)	(Anwari & Nurma Yulita, 2023)	Penelitian ini bertujuan untuk mengetahui metode ARIMA untuk		
	Judul	Penggunaan Machine learning	melakukan prediksi harga telur ayam ras di masa depan. Dataset		
		Untuk Prediksi Harga Telur Ayam	yang digunakan bersumber dari website resmi kemendagri. Untuk		
18		Ras di Kota Bandung	hasil akurasi prediksi dengan menggunakan metode ARIMA		
			menghasilkan nilai RMSE 0.82% dan nilai R² yaitu 0.87% dapat		
	Algoritma/Metode	ARIMA	disimpulkan metode ARIMA dalam memprediksi harga telur dapat		
			dikatakan cukup.		
	Peneliti (tahun)	(Kusuma & Hidayat, 2024)	Berdasarkan Kutipan dari penelitian ini mengenai prediksi harga		
19	Judul	Penerapan Model Regresi Linier	mobil menggunakan model Regresi Linier bertujuan untuk		
	Juuui	dalam Prediksi Harga Mobil Bekas	meningkatkan pemahaman mengenai pasar mobil bekas di negara		

		di India dan Visualisasi dengan	tersebut. Dataset yang digunakan pada penelitian ini bersumber dari			
		Menggunakan Power BI	situs kagle. Untuk hasil akurasi prediksi mengenai harga mobil			
	Algoritma/Metode	Regresi Liner	tersebut dengan menggunakan metode Regresi Linier yaitu 71.09%.			
	Peneliti (tahun)	(Pratama et al., 2023)	Pada peneltian ini berfokus pada menemukan algoritma terbaik			
		Perbandingan Performa Algoritma	antara algoritma <i>Linear Regresi</i> dan <i>Random Forest</i> dalam			
	Judul	Linear Regresi dan Random Forest	memprediksi harga bawang merah. Dataset yang digunakan dalan			
20		Untuk Prediksi Harga Bawang	penelitian ini didapatkan dari Dinas Perdagangan dan UMKM Kota			
20		Merah di Kota Samarinda	Samarinda yang berisi 152 data yang terdiri dari 4 variabel. Hasil			
			dari akurasi prediksi harga bawang untuk model Regresi Linear			
	Algoritma/Metode	Linear Regresi dan Random Forest	mendapatkan nilai RMSE 53.7% dan algoritma Random Forest			
			mendapatkan nilai RMSE 84.1%.			

Tabel 2.3, merangkum berbagai penelitian yang relevan dengan penelitian ini dalam hal prediksi harga dan rekomendasi. Berbagai algoritma *machine learning* telah digunakan, mulai dari model *regresi* sederhana hingga model *ensemble* seperti *Random Forest*, *XGBoost*, dan *Gradient Boosting*. Penelitian (Sari et al., 2024), dan (Nuris, 2024) menggunakan regresi linear untuk memprediksi harga laptop dan rumah, dengan hasil akurasi yang baik namun masih memerlukan validasi lebih luas. *Random Forest* digunakan (Warjiyono et al., 2024) dan (Pratama et al., 2023), menunjukkan akurasi tinggi dalam prediksi harga, namun perlu perbaikan dalam aspek optimasi.

Model lain seperti LSTM dan XGBoost yang dioptimasi dengan teknik random search digunakan (Tamami & Arifin, 2024), menghasilkan peningkatan akurasi yang signifikan. Pendekatan optimasi seperti feature scaling juga diterapkan (Radithya et al., 2024) pada Decision Tree dan mencapai akurasi hingga 91%. Sementara itu, (Simamora et al., 2024) menunjukkan bahwa kombinasi model Random Forest dan Gradient Boosting dapat meningkatkan performa prediksi secara signifikan. Dalam konteks rekomendasi, collaborative filtering yang digunakan (Yanisa Putri et al., 2024) kurang efektif dalam merekomendasikan produk.

Mengacu pada temuan penelitan sebelumnya, penelitian ini mengimplementasikan base model, hasil akurasi awal model yang cukup akurat dilakukan tahapan optimasi menggunakan *feature importance* untuk mengevaluasi kontribusi variabel terhadap hasil prediksi, serta *feature selection* untuk memilih fitur yang paling relevan. Dalam rekomendasi, metode *content-based filtering*

digunakan untuk memberikan rekomendasi produk yang lebih relevan. Seluruh hasil prediksi dan rekomendasi kemudian divisualisasikan menggunakan *Tableau* agar lebih mudah dipahami dalam menyusun strategi pemasarannya.

2.3.Matrix Penelitian

Tabel 2. 4 Matrix Penelitian

Tujuan Penelitian						
No	Penelitian	Algoritma	Perbandingan	Pengujian	Optimalisasi	Sistem
			Algoritma	Variabel	Algoritma	Rekomendasi
1	(Warjiyono et al.,	Random Forest	-	√	_	_
1	2024)	Tunuom 1 orest			- 	_
2	(Radithya et al., 2024)	Decision Tree + Feature	-	-	√	-
	(Raditilya Ct al., 2024)	Scalling				
3	(Hidayah et al., 2024)	Random Forest, Regresi	✓	✓	_	
	(111dayan et al., 2024)	Linear, dan Decision Tree		,	·	
4	(Simamora et al.,	Random Forest, dan Gradient	_	_	✓	_
	2024)	Boosting			·	
5	(Yanisa Putri et al.,	Collaborative Filtering	_	_	_	✓ ·
	2024)	Condoordiive Pillering	-	<u>-</u>	_	,
6	(Sari et al., 2024)	Regresi Linear	-	-	-	-

7	(Radithya et al., 2024)	Decision Tree	-	-	-	-
8	(Nasyuli et al., 2023)	Gradient Boosting dan Regresi Linear	√	-	-	-
9	(Wijaya et al., 2024)	XGBoost	-	-	✓	-
10	(Tamami & Arifin, 2024)	LSTM	-	√	-	-
11	(Rayhan Rizal Mahendra et al., 2024)	Collaborative Filtering	-	-	-	✓
12	(Nuris, 2024)	Regresi Linear	-	✓	-	-
13	(Negara & Mardiansyah, 2024)	Collaborative Filtering, dan Content-Based Filtering	-	-	-	✓
14	(Nouvalina & Hati, 2024)	Content-Based Filtering	-	-	-	√
15	(Saputro & Amin, 2024)	Content-Based Filtering	-	-	-	✓
16	(Oktavian & Amin, 2023)	Content-Based Filtering	-	-	-	✓
17	(Madani et al., 2024)	Collaborative Filtering	-	-	-	✓

18	(Anwari & Nurma Yulita, 2023)	ARIMA	-	-	-	-
19	(Kusuma & Hidayat, 2024)	Regresi Linear	-	√	-	-
20	(Aditya Pratama et al., 2024)	Random Forest, dan Regresi Linear	✓	✓	-	-
21	Our research	Random Forest, Decision Tree, Gradient Boosting, XGBoost, Linear Regresi, Content Based + Optimasi	√	✓	√	✓

Tabel 2.4, dapat disimpulkan bahwa penelitian yang dilakukan memiliki keterkaitan paling dekat dengan penelitian (Warjiyono et al., 2024) yang menggunakan algoritma *Random Forest* untuk prediksi harga, namun belum menerapkan teknik optimasi terhadap model untuk meningkatkan performa akurasi model. Selain itu, (Radithya et al., 2024) mengoptimasi *Decision Tree* dengan *feature scaling* untuk meningkatkan akurasi, tetapi hasilnya perlu ditingkatkan kembali. Pada penelitian (Yanisa Putri et al., 2024), metode *collaborative filtering*, masih belum cukup relevan dalam merekomendasikan produk.

Merujuk pada keterbatasan dari penelitian sebelumnya, penelitian ini bertujuan untuk memberikan kontribusi dan mengatasi permasalahan pada penelitian terdahulu, dengan menguji beberapa algoritma, seperti Random Forest, XGBoost, Gradient Boosting, Decision Tree, dan Regresi Linear. Model dengan akurasi awal yang cukup akurat, kemudian dioptimasi menggunakan teknik feature importance dan feature selection guna meningkatkan performa prediksi, sebagai alternatif dari teknik optimasi feature scaling yang digunakan pada penelitian sebelumnya. Selain itu, dalam rekomendasi, penelitian ini menggunakan content-based filtering yang diaggap mampu memberikan rekomendasi produk lebih relevan dibandingkan metode collaborative filtering.