BAB II

LANDASAN TEORI

2.1 Model Rekomendasi

Model Rekomendasi adalah sebuah alat yang mempermudah pengguna dalam menemukan informasi dari jumlah data yang sangat besar dengan memberikan rekomendasi item yang sesuai dengan preferensi pengguna (Yang et al., 2024). Model ini mengandalkan teknik seperti personalisasi dan pembelajaran representasi untuk mengoptimalkan interaksi antara pengguna dan item, sehingga dapat memberikan rekomendasi yang lebih akurat di berbagai sektor (Kukalakunta et al., 2024).

Model rekomendasi yang umum digunakan, yaitu content-based filtering, collaborative filtering, dan hybrid model. Content-based filtering memberikan rekomendasi berdasarkan kemiripan atribut item dengan preferensi pengguna sebelumnya, sedangkan collaborative filtering memanfaatkan interaksi antar pengguna dan item, baik melalui pendekatan user-based maupun item-based. Sementara itu, hybrid model menggabungkan keunggulan dari kedua metode sebelumnya untuk meningkatkan akurasi dan mengatasi kelemahan masingmasing, seperti masalah cold-start atau sparse data. Dengan berbagai pendekatan ini, sistem rekomendasi dapat disesuaikan dengan kebutuhan dan karakteristik data dalam berbagai domain aplikasi.

2.2 Sentiment analysis

Sentiment analysis merupakan teknik yang digunakan untuk mengidentifikasi opini, emosi, atau perasaan yang terkandung dalam suatu teks. Teknologi ini bertujuan untuk mengklasifikasikan sentimen dalam teks ke dalam kategori positif atau negatif (Sultana dkk., 2024). Dengan dukungan pemrosesan bahasa alami (Natural Language Processing), metode ini telah berkembang dari pendekatan berbasis aturan yang mengandalkan kamus kata sentimen menjadi pendekatan berbasis pembelajaran mesin. Hal tersebut memungkinkan pemrosesan data dalam jumlah besar dengan lebih cepat dan efisien.

Sentiment analysis sering diterapkan dalam sektor e-commerce untuk menganalisis ulasan pelanggan terhadap suatu produk atau layanan (Hicham & Nassera, 2024). Pendekatan ini memberikan wawasan mendalam bagi pelaku bisnis dalam memahami kepuasan pelanggan serta tren pasar yang sedang berkembang. Sebagai contoh, ulasan positif dapat meningkatkan kepercayaan calon pembeli terhadap suatu produk, sementara ulasan negatif dapat menurunkan minat pembelian dan mendorong calon pelanggan untuk mencari alternatif (Zhu dkk., 2021).

Sentiment analysis semakin penting karena pendekatan model rekomendasi konvensional yang hanya bergantung pada rating numerik sering kali tidak cukup untuk menangkap opini subjektif pengguna (Ait elouli dkk., 2024). Dengan adanya model berbasis Transformer seperti BERT dan RoBERTa, sentiment analysis dalam e-commerce dapat digunakan untuk menyaring produk dengan ulasan negatif,

sehingga rekomendasi yang dihasilkan lebih relevan dan sesuai dengan preferensi pengguna (Liu dkk., 2024).

2.2.1 Kelas Sentimen

Kelas sentimen merujuk pada kategori yang digunakan untuk mengelompokkan opini atau emosi dalam suatu teks berdasarkan polaritasnya (Zafar et al., 2024). Dalam penelitian ini, *sentiment analysis* dilakukan dengan mengklasifikasikan ulasan pengguna ke dalam dua kelas utama:

1. Sentimen positif

Mencerminkan kepuasan pengguna terhadap suatu produk atau layanan.

Ulasan dengan sentimen ini umumnya mengandung kata-kata dengan konotasi positif dan menunjukkan pengalaman yang baik.

2. Sentimen negatif

Mengindikasikan ketidakpuasan pengguna yang dapat disebabkan oleh berbagai faktor, seperti kualitas produk yang tidak sesuai, keterlambatan pengiriman, atau pelayanan yang kurang memuaskan.

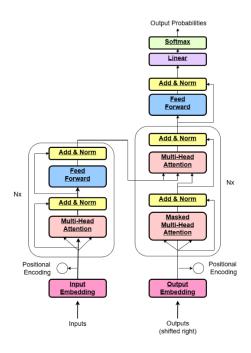
Dalam penelitian ini, kedua kelas sentimen tersebut digunakan untuk menyaring dan menganalisis opini pengguna terhadap suatu produk. Dengan mengintegrasikan model *RoBERTa* dalam *sentiment analysis*, sistem dapat mengidentifikasi polaritas sentimen secara lebih akurat, yang selanjutnya digunakan untuk meningkatkan relevansi rekomendasi produk dalam sistem rekomendasi berbasis *Collaborative Filtering*.

2.3 Transformer

Transformer adalah arsitektur deep learning yang diperkenalkan pada penelitian (Vaswani dkk., 2017) yang berjudul "Attention is All You Need." Model ini merevolusi bidang pemrosesan bahasa alami (NLP) dengan memperkenalkan mekanisme self-attention, yang memungkinkan model untuk menangkap hubungan antar kata dalam teks tanpa harus bergantung pada urutan kata seperti pada model berbasis Recurrent Neural Network (RNN) atau Long Short-Term Memory (LSTM).

Transformer terdiri dari encoder dan decoder, yang masing-masing memiliki beberapa lapisan self-attention dan feed-forward neural networks. Encoder merepresentasikan input teks dalam bentuk vektor bermakna dengan menangkap hubungan antar kata melalui multi-head self-attention, lalu diproses lebih lanjut oleh feed-forward neural networks untuk menghasilkan pemahaman yang lebih kaya.

Dalam *sentiment analysis* dan sistem rekomendasi, *encoder* lebih sering digunakan karena kemampuannya memahami konteks teks secara mendalam. Gambar 2.1 menunjukkan arsitektur *Transformer* yang menggambarkan interaksi antara *encoder* dan *decoder*.



Gambar 2. 1 Transformer Model

Sumber: (Vaswani dkk., 2017)

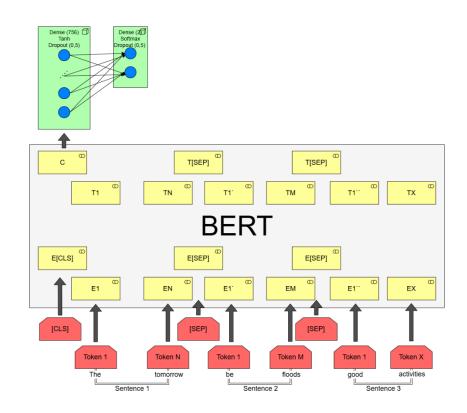
Keunggulan utama *Transformer* dalam *NLP* meliputi:

- 1. Pemrosesan Paralel: Tidak seperti RNN yang memproses teks secara berurutan, *Transformer* dapat memproses semua kata dalam satu waktu, sehingga lebih efisien dalam melatih model pada dataset besar.
- 2. Mekanisme *Self-attention*: Model dapat menangkap hubungan kata dalam teks secara global, bukan hanya bergantung pada kata-kata yang berdekatan.
- 3. *Scalability*: Model berbasis *Transformer* seperti *BERT* dan *RoBERTa* dapat dilatih pada dataset besar dan diadaptasi untuk berbagai tugas *NLP*, termasuk *sentiment analysis* dan sistem rekomendasi.

Transformer digunakan sebagai dasar dari model BERT dan RoBERTa untuk meningkatkan akurasi sentiment analysis dalam sistem rekomendasi produk e-commerce.

2.4 Bidirectional Encoder Representation from Transformers

BERT adalah model deep learning berbasis Transformer yang dikembangkan oleh Google (Devlin dkk., 2019) Berbeda dengan model NLP sebelumnya yang membaca teks dari kiri ke kanan (seperti RNN) atau dari kanan ke kiri (seperti bidirectional RNN), BERT membaca teks dalam dua arah sekaligus (bidirectional). Berikut pada Gambar 2.2. Merupakan arsitektur BERT.



Gambar 2. 2 BERT Model

Sumber: (Ripa'i dkk., 2024)

Keunggulan utama *BERT* dibandingkan model sebelumnya adalah kemampuannya dalam memahami konteks kata secara lebih dalam, karena model ini dilatih menggunakan teknik *Masked Language Model* (MLM) dan *Next Sentence Prediction* (NSP):

- Masked Language Model (MLM): Sebagian kata dalam teks dihapus (masked), lalu model diminta untuk menebak kata yang hilang berdasarkan konteks sekitarnya.
- 2. Next Sentence Prediction (NSP): Model belajar memahami hubungan antar kalimat dengan memprediksi apakah dua kalimat memiliki hubungan semantik atau tidak.

BERT merupakan dasar model RoBERTa. Dalam melakukan sentiment analysis pada ulasan produk e-commerce, kemampuan BERT dalam memahami konteks kata memungkinkan model untuk menangkap makna yang lebih kompleks dalam teks ulasan pelanggan, sehingga menghasilkan rekomendasi produk yang lebih relevan.

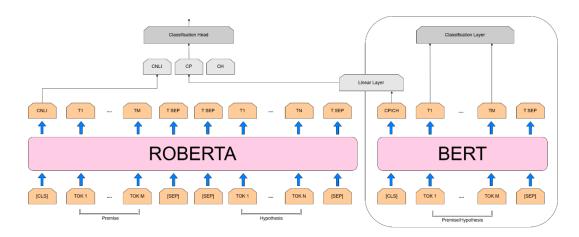
2.5 Robustly Optimized BERT Pretraining Approach

Model RoBERTa (Robustly Optimized BERT Pretraining Approach) merupakan pengembangan dari BERT (Bidirectional Encoder Representations from Transformers) yang dirancang untuk meningkatkan pemahaman model terhadap teks dengan cara melakukan pretraining lebih lama pada dataset yang lebih besar. RoBERTa menghilangkan tugas Next Sentence Prediction (NSP) yang terdapat pada BERT serta menerapkan masking dinamis, yang membuat model lebih adaptif dalam menangkap pola linguistik dari teks (Rahman dkk., 2024).

RoBERTa dapat dioptimalkan untuk memahami ulasan pelanggan dengan lebih akurat. Model ini mampu menangkap nuansa bahasa yang lebih kompleks, seperti sarkasme atau opini implisit, yang sering muncul dalam ulasan produk (Zhao dkk., 2024).

Untuk menangani berbagai ekspresi sentimen dalam bahasa yang digunakan dalam *e-commerce*, model yang digunakan dalam penelitian ini adalah *RoBERTa*-base, sebuah versi yang telah dilatih pada dataset besar guna meningkatkan akurasi dalam tugas klasifikasi teks (Rahman dkk., 2024). Model ini kemudian menjalani proses *fine-tuning* menggunakan dataset ulasan produk dari *e-commerce* guna menyesuaikan pemahaman model terhadap pola bahasa yang sering digunakan oleh pelanggan. Dengan pendekatan ini, model diharapkan dapat lebih akurat dalam mengklasifikasikan sentimen ulasan serta memberikan kontribusi dalam meningkatkan sistem rekomendasi produk.

RoBERTa-Base dirancang dengan arsitektur berbasis transformer dan memiliki sekitar 125 juta parameter, terdiri atas 12 lapisan, 768 dimensi hidden states, serta 12 attention heads. Model ini dapat menerima input hingga 512 token, dengan token pertama selalu berupa [CLS], yang berfungsi sebagai representasi keseluruhan teks. Dalam tugas klasifikasi sentimen, hidden state terakhir dari [CLS] kemudian diteruskan ke lapisan softmax untuk memprediksi probabilitas sentimen positif atau negatif (Rahman dkk., 2024).



Gambar 2. 3 RoBERTa Model

Sumber: (Naseer dkk., 2022)

Pada Gambar 2.3, dapat dilihat mengenai arsitektur *RoBERTa*, yang menggunakan transformer encoder untuk memproses teks. Model ini dibandingkan dengan *BERT* dalam tugas klasifikasi teks. Berikut penjelasan komponen utama dalam model:

- [CLS]: Token spesial di awal input, digunakan untuk merepresentasikan keseluruhan teks dalam tugas klasifikasi.
- 2. Token1-N: Tokenisasi teks input menjadi *subword* unit menggunakan *Tokenizer RoBERTa* atau *BERT*.
- 3. E[CLS], E1-N: *Embedding* dari masing-masing token setelah melalui lapisan *embedding*, yang merepresentasikan kata dalam ruang vektor.
- C, T1-N: Representasi akhir dari token setelah diproses oleh *Transformer*.
 C merupakan keluaran dari token [CLS], yang biasanya digunakan untuk klasifikasi teks.
- Classification Head & Linear Layer: Lapisan tambahan di atas RoBERTa atau BERT untuk tugas klasifikasi. RoBERTa memiliki struktur yang lebih

kompleks dengan *multiple classification heads* dibandingkan *BERT* yang hanya menggunakan satu lapisan linear.

6. *Softmax*: Fungsi aktivasi di lapisan output yang mengubah nilai logits menjadi probabilitas untuk menentukan kelas teks yang dianalisis.

Gambar ini menunjukkan bahwa *RoBERTa* memiliki arsitektur serupa dengan *BERT* tetapi dengan optimasi tambahan, seperti penggunaan lebih banyak data pretraining dan tanpa penggunaan pemilihan urutan NSP (*Next Sentence Prediction*).

2.6 Collaborative Filtering

Collaborative Filtering adalah metode sistem rekomendasi yang bekerja dengan menganalisis pola perilaku pengguna untuk menemukan hubungan antara pengguna atau produk yang berbeda (Hasan, 2024). Metode ini dibagi menjadi dua jenis utama:

- 1. *User-Based Collaborative Filtering*: Menganalisis kesamaan antar pengguna berdasarkan pola pembelian atau penilaian terhadap produk.
- 2. *Item-Based Collaborative Filtering*: Menganalisis kesamaan antar produk berdasarkan preferensi pengguna sebelumnya.

Gambar 2.4 merupakan konsep *Collaborative Filtering* (CF) dalam sistem rekomendasi, di mana preferensi pengguna lain digunakan untuk memberikan rekomendasi kepada pengguna target.

Collaborative Filtering West-based Litem-based

Gambar 2. 4 Model Collaborative Filtering

Gambar 2.4. mengilustrasikan bagaimana *User-based Collaborative Filtering* dan *Item-based Collaborative Filtering* bekerja. *User-based Collaborative Filtering* mengelompokkan pengguna dengan preferensi serupa untuk merekomendasikan item yang disukai oleh pengguna lain dalam kelompok tersebut. Sementara itu, *Item-based Collaborative Filtering* menganalisis keterkaitan antar item berdasarkan pola interaksi pengguna, sehingga item yang sering dipilih bersama dapat direkomendasikan. Pendekatan ini banyak digunakan dalam *e-commerce* dan layanan streaming untuk meningkatkan relevansi rekomendasi.

2.7 Perhitungan Kemiripan

Perhitungan kemiripan untuk menentukan hubungan antara pengguna atau item yang umum menggunakan *Cosine Similarity* dan *PCC*:

1. Cosine Similarity

Cosine Similarity mengukur kesamaan antara dua vektor berdasarkan sudut di antara keduanya, dengan menggunakan persamaan 2.1:

$$sim(A,B) = \frac{A \cdot B}{||A|||x|||B||}$$
 (Persamaan 2. 1)

Penjelasn:

A.B: Dot produk (perkalian titik) antara dua vector A dan B

||A|| : Panjang (norma) dari vector A

||B||: Panjang (norma) vector B

2. Pearson Correlation Coefficient (PCC)

PCC menghitung korelasi linier antara dua pengguna atau item dengan mempertimbangkan perbedaan rata-rata *ratingnya*, dengan persamaan 2.2:

$$PCC(A,B) = \frac{\sum (A_i - \bar{A}) (B_i - \bar{B})}{\sqrt{\sum (A_i - \bar{A})^2 \times \sqrt{\sum (B_i - \bar{B})^2}}}$$
(Persamaan 2. 2)

Penjelasan:

 A_i : Rating pengguna/item A terhadap item/i ke-i.

 $B_i: Rating$ pengguna/item B terhadap item/i ke-i.

 \bar{A} : Rata-rata rating yang diberikan oleh pengguna/item A.

 \bar{B} : Rata-rata *rating* yang diberikan oleh pengguna/item B.

 \sum : Simbol penjumlahan atas seluruh item yang sama-sama diberi rating oleh A dan B.

 $A_i - \bar{A}$: Selisih antara *rating* aktual dan rata-rata *rating* A.

 $B_i - \bar{B}$: Selisih antara *rating* aktual dan rata-rata *rating* B.

2.8 Prediksi Rating

Model rekomendasi memprediksi *rating* menggunakan dua pendekatan yang utama:

1. User-Based Collaborative Filtering

Metode ini menggunakan *rating* dari pengguna yang memiliki kemiripan tinggi untuk memperkirakan *rating* pengguna target dengan Persamaan 2.3 berikut:

$$\hat{r}_{u,i} = \bar{r}_u + \frac{\sum v \in N(sim(u,v) \times (r_{v,i} - \bar{r}_v))}{\sum v \in N|sim(u,v)|}$$
 (Persamaan 2. 3)

 $\hat{r}_{u,i}$: Prediksi rating yang diberikan oleh pengguna u terhadap item i.

 \bar{r}_u : Rata-rata rating yang diberikan oleh pengguna u (target).

 $v \in N$: Sekumpulan pengguna tetangga (neighbors) yang mirip dengan pengguna u dan telah memberi rating pada item i.

sim(u, v): Nilai kemiripan antara pengguna u dan pengguna v, dihitung menggunakan *Cosine Similarity*, PCC, atau metode lain.

 $\hat{r}_{v,i}$: Rating yang diberikan oleh pengguna v terhadap item i.

 \bar{r}_v r : Rata-rata *rating* dari pengguna v.

| sim (u, v): Nilai absolut dari kemiripan, digunakan untuk normalisasi agar pembagi tetap positif.

2. Item-Based Collaborative Filtering

Metode ini memprediksi *rating* berdasarkan kesamaan antar item yang sudah diberi *rating* oleh pengguna, berikut persamaan pada 2.4:

$$\hat{r}_{u,i} = \frac{\sum j \in N(sim(i,j) \times r_{u,j})}{\sum j \in N|sim(i,j)|}$$
(Persamaan 2. 4)

Penjelasan:

 $\hat{r}_{u,i}$: Prediksi rating yang akan diberikan oleh pengguna u terhadap item i.

 $j \in N$: Sekumpulan item tetangga yang mirip dengan item i, dan telah diberi rating oleh pengguna u.

sim(i, j): Nilai kemiripan antara item i dan item j.

 $r_{u,j}$: Rating aktual yang diberikan oleh pengguna u terhadap item j.

|sim(i,j)|: Nilai absolut kemiripan antar item, digunakan untuk normalisasi.

2.9 Integrasi Sentiment analysis dan Collaborative Filtering

Integrasi antara hasil *sentiment analysis* dan metode *Collaborative Filtering* (CF) diterapkan untuk meningkatkan akurasi rekomendasi produk dalam model *ecommerce*. CF digunakan untuk memprediksi peringkat suatu produk berdasarkan pola interaksi pengguna, sementara *sentiment analysis* dengan *RoBERTa* mengevaluasi opini pengguna melalui ulasan yang diberikan. Integrasi kedua metode ini dilakukan dengan mengombinasikan hasil prediksi *rating* dari CF dan skor sentimen dari analisis ulasan menggunakan persamaan 2.5 berikut:

$$H = R * \lambda + (1 - \lambda) S$$
 (Persamaan 2. 5)

di mana:

H: adalah skor akhir yang digunakan sebagai dasar rekomendasi,

R: merupakan *rating* produk yang diprediksi menggunakan metode CF tanpa mempertimbangkan *sentiment analysis*,

S: adalah skor sentimen yang diperoleh dari model RoBERTa berdasarkan analisis ulasan pengguna, dan

λ: adalah bobot yang diberikan untuk menyesuaikan kontribusi antara CF dan *sentiment* analysis dalam menentukan skor akhir.

2.10 Evaluasi Model

Evaluasi model bertujuan untuk mengukur kinerja sistem dalam menghasilkan hasil yang akurat dan relevan. Proses ini melibatkan pengukuran sejauh mana model mampu memprediksi dengan benar serta menilai tingkat kesalahan yang terjadi. Dengan menggunakan berbagai metrik evaluasi, performa model dapat dianalisis secara objektif untuk menentukan efektivitasnya dalam menyelesaikan tugas yang diberikan.

2.11.1 Sentiment analysis

Model dievaluasi berdasarkan kemampuannya dalam mengklasifikasikan ulasan pengguna ke dalam kategori seperti positif atau negatif pada *sentiment analysis*. Beberapa metrik utama yang digunakan adalah *Accuracy*, *Precision*, *Recall*, F1-score, dan AUC-ROC (Wang, 2024). *Accuracy* menunjukkan proporsi prediksi yang benar terhadap total data uji, yang dirumuskan pada persamaan 2.6.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 (Persamaan 2. 6)

Precision mengukur seberapa tepat model dalam memberikan prediksi positif, rumusnya ada pada persamaan 2.7.

$$Precision = \frac{TP}{TP + FP}$$
 (Persamaan 2. 7)

Sementara itu, *Recall* menilai sejauh mana model dapat mengidentifikasi data positif dari seluruh data positif yang tersedia, sebagaimana dirumuskan pada Persamaan 2.8.

$$Recall = \frac{TP}{TP + FP}$$
 (Persamaan 2. 8)

F1-score merupakan rata-rata harmonis antara *Precision* dan *Recall* yang digunakan untuk memberikan penilaian yang lebih seimbang, terutama dalam dataset yang tidak seimbang, seperti pada persamaan 2.9.

$$F1Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$
 (Persamaan 2. 9)

Penjelasan:

TP (*True Positive*): Jumlah data positif yang diprediksi benar oleh model.

TN (*True Negative*): Jumlah data negatif yang diprediksi benar oleh model.

FP (False Positive): Jumlah data negatif yang salah diprediksi sebagai positif

FN (False Negative): Jumlah data positif yang salah diprediksi sebagai negatif.

2.11.2 Collaborative Filtering

Evaluasi model *Collaborative Filtering* (CF) dilakukan untuk mengukur akurasi prediksi *rating* serta relevansi rekomendasi yang diberikan kepada pengguna. Beberapa metrik utama yang digunakan pada penelitian ini adalah *RMSE* (Elahi & Zirak, 2024).

Root Mean Square Error (RMSE) digunakan untuk mengukur rata-rata kesalahan kuadrat antara rating yang diprediksi dan rating aktual, yang dinyatakan dalam persamaan 2.10.

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (r_i - \hat{r}_i)^2}$$
(Persamaan 2. 10)

Penjelasan:

 $\boldsymbol{r_i}$: Nilai aktual (misalnya rating aktual dari pengguna untuk item ke-i).

 $\hat{\boldsymbol{r}}_i$: Nilai prediksi dari model untuk item ke-i.

N : Jumlah total data (contohnya jumlah prediksi yang dilakukan).

 $(r_i - \hat{r}_i)$: Kuadrat dari selisih antara nilai aktual dan nilai prediksi (error).

Kombinasi metrik evaluasi pada *sentiment analysis* dan model rekomendasi memberikan dasar yang kuat untuk menilai performa masing-masing pendekatan. Evaluasi ini memastikan model tidak hanya akurat dalam klasifikasi sentimen, tetapi juga mampu membuat rekomendasi produk yang lebih relevan dan akurat.

2.11 State of The Art

Tabel 2. 1 State of The Art

No	Nama Peneliti/Journal		Hasil Penelitian	
	Peneliti (tahun)	(Karabila dkk., 2023)	Penelitian ini	
		Enhancing	mengintegrasikan BiLSTM	
		Collaborative Filtering	ke dalam Collaborative	
	Judul	Based Recommender	Filtering untuk sentiment	
		System Using	analysis. Evaluasi pada	
		Sentiment analysis	Amazon Kindle book	
			menunjukkan AUC 92%,	
1			Accuracy 93%, dan F1-	
1			score 94%, sedangkan pada	
			Amazon digital music,	
	Algoritma/Metode	CF + BiLSTM	AUC 78%, Accuracy 94%,	
	Algoritina/Metode		dan F1-score 96%. Hasil	
			membuktikan peningkatan	
			efektivitas rekomendasi	
			dibandingkan metode	
			konvensional.	
	Peneliti (tahun)	(Barzan Abdalla dkk.,	Penelitian ini	
	Tenenti (tanun)	n.d.)	mengembangkan sistem	
		An Efficient	rekomendasi e-commerce	
		Recommendation	dengan Passer Learning	
	Judul	System in Ecommerce	Optimization berbasis	
2	Judui	using Passer learning	BiLSTM. Model mencapai	
		optimization based on	F1-score 92.51%, MSE	
		BiLSTM	1.24%-1.58%, <i>Precision</i>	
			91.90%-92.69%, dan	
	Algoritma/Metode	PSO + BiLSTM	Recall 90.76%-93.47%	
			pada tiga dataset.	

No	Nama Peneliti/Journal		Hasil Penelitian	
	Peneliti (tahun)	(Pokhrel, 2024)	Penelitian ini	
	Judul	Enhancing Ecommerce Recommendations Using <i>Hybrid</i> Models	membandingkan CNNLSTM dan WolfWhale Fusion, di mana WolfWhale Fusion	
3	Algoritma/Metode	Whale Optimization Algorithm Grey Wolf Optimizer (WOAGWO)	unggul dengan MAE 0.3575, MSE 0.3575, RMSE 2.9677, MAPE 0.0110, dan MEAE 0.8445, menunjukkan prediksi lebih akurat dan stabil.	
	Peneliti (tahun)	(Gunawan dkk., 2024)	Penelitian ini menerapkan	
4	Judul	Sistem Rekomendasi Produk ECommerce Menggunakan Algoritma Apriori	algoritma Apriori untuk rekomendasi <i>e-commerce</i> di Toko Hocki Jaya. Hasilnya, pasangan item	
4	Algoritma/Metode	Algoritma Apriori	seperti NIPPON 5400 WALL SEALER dan NIPPON VINILEX 5000 memenuhi threshold dan direkomendasikan ke pelanggan.	
	Peneliti (tahun)	(Song, 2024)	Penelitian ini	
5	Judul	Analysis on recommendation systems based on ML and DL Approaches	membandingkan kinerja Machine Learning dan Deep learning dalam sistem rekomendasi, fokus pada akurasi, cakupan,	

No	Nama Peneliti/Journal		Hasil Penelitian
			kualitas peringkat, dan cold
			start. Hasilnya, model DL,
			khususnya multimodal,
		Mashina I samina dan	mengungguli CF dan SVD.
	Algoritma/Metode	Machine Learning dan	CNN dan RNN
		Deep learning	menunjukkan Accuracy
			dan Recall terbaik pada
			dataset Amazon dan
			MovieLens.
	Peneliti (tahun)	(Renukadevi dkk.,	Hasil penelitian
	Tenenti (tanun)	2024)	menunjukkan bahwa model
		An Improved	rekomendasi yang
	Judul	Collaborative User	diusulkan mengungguli
		Product	metode seperti Basic CF,
6		Recommendation	PCA + KMeans, dan
		System	TriFac. Model ini
		Using Computational	meningkatkan Precision,
		Intelligence with	Recall, dan Fscore pada
		Association Rules	berbagai tingkat sparsity
	Algoritma/Metode	PCA + KMeans	(100%).
	D 14: (4 1)	(Saputro & Amin,	Penelitian ini mengkaji
	Peneliti (tahun)	2024)	sistem rekomendasi
		SISTEM	ecommerce untuk skincare
		REKOMENDASI	face wash pria
7		CONTENT-BASED	menggunakan metode
	Judul	FILTERING	contentbased filtering
		SKINCARE PRIA	dengan algoritma TF IDF
	Judul	DI ECOMMERCE	dan Cosine Similarity.
		SHOPEE	Hasilnya, produk 'Facial
7		FILTERING SKINCARE PRIA DI ECOMMERCE	contentbased filtering dengan algoritma TF IDF dan Cosine Similarity.

No	Nama Peneliti/Journal		Hasil Penelitian	
	Algoritma/Metode	Content-Based Filtering	Wash Brightening Benings' memiliki tingkat kesamaan tertinggi (0,5611).	
	Peneliti (tahun)	(Salsabil dkk., 2024)	Penelitian ini merancang	
8	Judul	Content-based filtering movie recommender system using semantic approach with recurrent neural network classification and SGD	sistem rekomendasi berbasis CBF dengan membandingkan TFIDF, BERT, GPT2, dan RoBERTa. Hasilnya, RoBERTa unggul dengan loss 0,6514, Accuracy 95,59%, Precision 95,76%,	
	Algoritma/Metode	Content-based Filtering	Recall 95,41%, dan F1Score 95,58%, serta RMSE dan MAE terendah, menghasilkan rekomendasi yang akurat.	
	Peneliti (tahun)	(M. Guo et al., 2020)	Penelitian ini mengevaluasi	
9	Judul	Deep learning-based Online Alternative Product Recommendations at Scale	model rekomendasi berbasis deep learning dibandingkan Attributed Based dan Frequently Compared dengan ambang	
9	Algoritma/Metode	Deep learning berbasis Cosine Similarity	Cosine Similarity ≥ 0.8. Hasilnya, model deep learning unggul dalam Precision, Recall (Top 1, 5, 10), serta meningkatkan cakupan rekomendasi	

No	Nama Peneliti/Journal		Hasil Penelitian	
			hingga 81.2%83.4%,	
			melampaui Attributed	
			Based (31.5%) dan	
			Frequently Compared	
			(47.1%).	
	Donaliti (tahun)	(Anugerah Rahayu	Penelitian ini mengkaji	
	Peneliti (tahun)	Kasim et al., 2024)	penerapan algoritma User-	
		Sistem Rekomendasi	Based Collaborative	
		Produk UMKM	Filtering pada sistem	
		Menggunakan	rekomendasi produk	
	Judul	Algoritma User-Based	UMKM. Hasilnya,	
		Collaborative	algoritma ini berhasil	
10		Filtering Berbasis	diterapkan dengan baik	
10		Website	pada sistem rekomendasi	
	Algoritma/Metode		yang dibangun. Evaluasi	
			Accuracy menunjukkan	
			nilai MAE sebesar 1.11,	
		Collaborative Filtering	MSE sebesar 0.0649, dan	
			MAPE sebesar 1.65%,	
			yang menunjukkan kinerja	
			rekomendasi yang baik.	
	D	(Zuhdiansyah &	Penelitian ini	
	Peneliti (tahun)	Luthfiarta, 2024)	mengembangkan sistem	
		Sistem Rekomendasi	rekomendasi berbasis	
11		Pembelian Smartphone	Collaborative Filtering	
111	T 1 1	berbasis Algoritma K-	model-based dengan	
	Judul	Means dan	algoritma SVD,	
		Singular Value	dikombinasikan dengan	
		Decomposition	KMeans untuk	
11	Judul	Sistem Rekomendasi Pembelian Smartphone berbasis Algoritma K- Means dan Singular Value	rekomendasi berbasis Collaborative Filtering model-based dengan algoritma SVD, dikombinasikan dengan	

No	Nama Peneliti/Journal		Hasil Penelitian	
			mengelompokkan produk.	
			Hasilnya, sistem lebih	
			efektif dalam rekomendasi	
			dan prediksi rating, dengan	
			MAE 0.8150 dan RMSE	
	Algoritma/Metode	KMeans + SVD	1.1781 pada cluster 0.	
	Algoritma/Metode	Kivicans + 5 v D	Meski RMSE masih tinggi	
			akibat sparsitas data,	
			Matrix Factorization	
			terbukti lebih unggul dari	
			model Neighborhood-	
			based.	
	Peneliti (tahun)	(Ramadhan Putra &	Penelitian ini	
		Fathur Rahman, 2024)	menggunakan Item-based	
	Judul	Pemanfaatan Metode	Collaborative Filtering	
		Collaborative Filtering	dengan KNN (K=2) dan	
		dengan Algoritma	data splitting 70:30,	
12		KNN pada Sistem	menghasilkan MAE 1.058	
12		Rekomendasi Produk	dan RMSE 1.362. Semakin	
			kecil nilai error, semakin	
		Collaborative Filtering	akurat model, sehingga	
	Algoritma/Metode	+ KNN	penelitian ini dapat menjadi	
			referensi untuk studi sistem	
			rekomendasi selanjutnya.	
	Peneliti (tahun)	(Zhang & Wu, 2024)	Penelitian ini	
		Ecommerce	mengembangkan sistem	
13	Judul	recommender system	rekomendasi <i>e-commerce</i>	
		based on improved	dengan KMeans yang	
		Kmeans commodity	ditingkatkan oleh algoritma	

No	Nama Peneliti/Journal		Hasil Penelitian	
		information	genetika (GA),	
		management model	meningkatkan akurasi dan	
			kecepatan pencarian.	
			Hasilnya, <i>Recall</i> 42.8%	
			dengan konvergensi 207	
			iterasi. Pada MovieLens	
			(1M), RMSE 0.68 (sparsitas	
	Algoritma/Metode	Improved K-Means	60%), dan pada Epinions,	
			RMSE 0.71. Model ini	
			mengurangi kesalahan	
			prediksi <i>rating</i> , namun	
			perlu uji lebih lanjut dalam	
			aplikasi praktis.	
	Peneliti (tahun)	(Syah, 2020)	Penelitian ini menerapkan	
	Judul	Performa Algoritma	User KNN untuk prediksi	
		User K-Nearest	peringkat produk di	
		Neighbors pada Sistem	Tokopedia. Evaluasi	
14		Rekomendasi di	menunjukkan RMSE 0.713,	
		Tokopedia	MAE 0.488, dan NMAE	
		Content-Based	0.122, menandakan	
	Algoritma/Metode	Filtering	efektivitas algoritma dalam	
			sistem rekomendasi.	
	Peneliti (tahun)	(X. Guo, 2024)	Penelitian ini mengusulkan	
		Sentiment analysis	model rekomendasi	
		Based on RoBERTa for	berbasis sentiment analysis	
15	Judul	Amazon Review: An	deep learning	
		Empirical Study on	menggunakan RoBERTa	
		Decision Making	dan regresi time-series	
	Algoritma/Metode	RoBERTa	pada ulasan produk	

No	Nama Peneliti/Journal		Hasil Penelitian
			Amazon. Model mencapai
			Accuracy 88.44%,
			Precision 0.8836, Recall
			0.8844, dan F1-score
			0.8840.
	Peneliti (tahun)	(Shang et al., 2024)	Penelitian ini mengusulkan
		Enhancing E-	model rekomendasi
		commerce	berbasis sentiment analysis
		Recommendation	deep learning dan Neural
	Judul	Systems with Deep	Collaborative Filtering
		learning Based	(NCF) dengan BERT untuk
		Sentiment analysis of	menangkap nuansa ulasan.
16		User Reviews	Model "Ours" unggul
10	Algoritma/Metode		dibandingkan baseline
			seperti ItemKNN, BPR,
			dan BERT4Rec, dengan
		NCE + DEDT	NDCG 0.4678, Precision
		IVCI + BERT	0.2890, <i>Recall</i> 0.3456,
			MAP 0.3012, dan MRR
			0.3789, serta keberagaman
			0.8567 dan novelty 0.4956.
	Peneliti (tahun)	Our Research	Penelitian ini
		INTEGRASI	mengembangkan model
		ROBERTA-BASED	rekomendasi yang
17		SENTIMENT	mengintegrasikan model
17	Judul Penelitian	ANALYSIS DAN	Collaborative Filtering dan
		COLLABORATIVE	RoBERTa, dimana
		FILTERING UNTUK	RoBERTa disini berfungsi
		REKOMENDASI	untuk menghasilkan

No	Nama Per	Nama Peneliti/Journal		Hasil Penelitian
	PRODUK E- s		sentiment score dari ulasan	
	COMMERCE		pengguna, dan nantinya	
				akan di integrasikan
	Algoritma/Metode	CF + RoBERTa		dengan hasil Collaborative
				Filtering.

Penelitian sebelumnya telah mengeksplorasi berbagai pendekatan dalam sistem rekomendasi, dengan beberapa di antaranya mengintegrasikan sentiment analysis untuk meningkatkan akurasi rekomendasi. Seperti pada penelitian terdekatnya yaitu pada penelitian Karabila et al., (2023) yang menggunakan BiLSTM untuk sentiment analysis dan kemudian diintegrasikan dengan Collaborative Filtering.

Namun, pendekatan pada penelitian Karabila et al., (2023) masih memiliki keterbatasan dalam hal representasi konteks dan nuansa bahasa dalam ulasan pengguna. *BiLSTM*, meskipun efektif, tidak sekuat model transformer modern seperti *RoBERTa* dalam memahami dependensi panjang dan makna semantik yang kompleks dalam teks. Selain itu, integrasi yang dilakukan pada penelitian sebelumnya cenderung masih bersifat sederhana dan belum memanfaatkan kekuatan representasi bahasa dari *transformer* secara optimal.

Gap yang diisi dari penelitian Karabila et al., (2023) adalah penggunaan model *RoBERTa* yang lebih unggul dalam pemrosesan bahasa alami untuk *sentiment* analysis, yang kemudian diintegrasikan dengan *Collaborative Filtering* dalam konteks *e-commerce*.

2.12 Matriks Penelitian

Tabel 2. 2 Matriks Penelitian

			Pendekatan		
No	Penulis	Algoritma	Technical	Sentiment	
			Analysis	analysis	
1	Karabila	CF + BiLSTM	✓	√	
1	dkk. (2023)	C1 + BiLSTW	·	·	
	Barzan				
2	Abdalla dkk.	PSO + BiLSTM	✓	✓	
	(n.d.)				
	Pokhrel	WOAGWO			
3	(2024)	(WolfWhale	✓	-	
	(2021)	Optimization)			
4	Gunawan	Algoritma Apriori	√	_	
•	dkk. (2024)	Tigorium Tipriori			
5	Song (2024)	Machine Learning	√	_	
		dan Deep learning			
6	Renukadevi	PCA + KMeans	✓	_	
Ü	dkk. (2024)	1 011 121110			
	Saputro &	Content-Based			
7	Amin	Filtering	✓	-	
	(2024)	0			
8	Salsabil dkk.	Content-Based	✓	_	
	(2024)	Filtering			
	Guo dkk.	Deep learning			
9	(2020)	berbasis Cosine	✓	-	
	(2020)	Similarity			
10	Anugerah	Collaborative	✓	✓	
Ĵ	Rahayu	Filtering			

			Pende	ekatan
No	Penulis	Algoritma	Technical Analysis	Sentiment analysis
	Kasim dkk. (2024)			
11	Zuhdiansyah & Luthfiarta (2024)	KMeans + SVD	√	√
12	Ramadhan Putra & Fathur Rahman (2024)	Collaborative Filtering + KNN	✓	-
13	Zhang & Wu (2024)	Improved KMeans	√	✓
14	Syah (2020)	Content-Based Filtering	✓	-
15	Dewi & Ciptayani (2022)	Hybrid Deep learning (SOM + RNN)	√	-
16	Shang dkk. (2024)	NCF + BERT	✓	✓
17	Our Research	CF + RoBERTa	✓	✓

Penelitian ini berfokus pada evaluasi kinerja model rekomendasi dan sentiment analysis dengan pendekatan yang lebih canggih dibandingkan penelitian yang terdekatnya yaitu penelitian yang dilakukan oleh Karabila et al., (2023) yang menggabungkan *Collaborative Filtering* (CF) dengan *BiLSTM*, penelitian ini

menekankan optimalisasi model rekomendasi melalui kombinasi pendekatan yang lebih adaptif.

Penelitian ini menghadirkan kebaruan dengan menggabungkan metode pemrosesan teks yang lebih canggih untuk *sentiment analysis* serta optimasi teknik rekomendasi yang lebih dinamis. Pendekatan dalam penelitian ini mengintegrasikan *RoBERTa* untuk *sentiment analysis* dan *Collaborative Filtering* untuk menghasilkan rekomendasi, yang menitikberatkan pada peningkatan akurasi dengan mempertimbangkan aspek ketidaklengkapan data serta hubungan antaritem yang lebih kompleks. Dengan demikian, penelitian ini berkontribusi dalam meningkatkan efektivitas model rekomendasi dengan menggabungkan pendekatan untuk mencapai hasil yang lebih optimal.