BAB II

LANDASAN TEORI

2.1 Jaringan Komputer

Jaringan komputer merupakan kumpulan dari beberapa komputer yang berjumlah banyak yang terpisah-pisah namun dapat saling terkoneksi atau saling terhubung dalam melaksanakan tugasnya. Jaringan komputer seperti dua buah komputer dapat dikatakan saling terhubung apabila keduanya dapat saling berbagi data, bertukar informasi, program-program, dan sebagainya. LAN (*Local Area Network*), MAN (*Metropolitan Area Network*), WAN (*Wide Area Network*) adalah contoh dari jaringan komputer. Jaringan komputer dapat dihubungkan melalui berbagai kabel, seperti kabel tembaga, kabel *coaxial*, kabel *twisted pair*, kabel serat optik dan berbagai teknologi *wireless* (Purba dan Efendi, 2020).

2.2 Cache

Cache merupakan perangkat keras atau perangkat lunak yang digunakan untuk menyimpan sesuatu seperti data untuk sementara waktu di lingkungan komputasi (Rahman dan Ikbal, 2019).

Berikut adalah beberapa jenis cache:

a. Browser/HTTP Cache

Browser cache membantu mempermudah dan membuat loading lebih cepat (Manhas, 2013). Browser cache, web server tidak perlu lagi melakukan request dan transmisi data untuk menampilkan situs yang ingin dikunjungi di browser (Ridhalri, 2022).

b. *OpCode Cache*

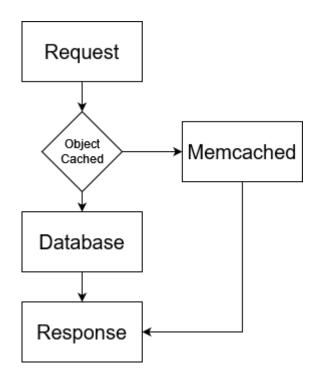
OpCode Cache adalah cache pada script PHP dengan menyimpan hasil kompilasi dari PHP. Proses eksekusi PHP jadi lebih singkat dengan adanya OpCode Cache, karena tidak perlu melalui tahapan parsing dan kompilasi dan disimpan didalam memory (Rahman dan Ikbal, 2019).

c. Object Cache

Object cache, data objek dapat disimpan secara lokal sehingga tidak perlu diambil secara konstan untuk *request* tambahan. *Object cache* dapat membantu meningkatkan kecepatan dan kinerja aplikasi *web* (Rahman dan Ikbal, 2019).

d. Page Cache

Page cache memiliki kemiripan dengan cache lain. Page cache memiliki manfaat untuk meningkatkan kecepatan waktu loading sebuah halaman website untuk memberikan user experience yang lebih baik (Luthfi Muhammad, Data Mahendra, 2018). Page cache menyimpan halaman web lengkap untuk ditampilkan di lain waktu kepada pengunjung (Rahman dan Ikbal, 2019).


e. Content Delivery Network Cache

CDN cache adalah bentuk penyimpanan data yang lebih luas. CDN Cache menambahkan konten situs web statis ke server proxy yang didistribusikan secara global. Pengunjung dari seluruh dunia memungkinkan untuk mengunduh konten situs anda lebih cepat sehingga mempercepat waktu buka situs (Rahman dan Ikbal, 2019).

2.3 Memcached

Memcahched adalah sistem caching memory terdistribusi yang bersifat umum. Memcached digunakan untuk mempercepat website dinamis yang menggunakan database dengan menyimpan data dan objek di RAM untuk mengurangi jumlah pembacaan ke sumber data eksternal (seperti database atau API) (Hidayat dan Rahmatulloh, 2019). Memcached adalah perangkat lunak sumber terbuka yang gratis, dilisensikan di bawah lisensi Revised BSD. Memcached berjalan pada sistem operasi mirip Unix (Linux dan macOS) serta Microsoft Windows (Hidayat & Rahmatulloh, 2019).

Memcached merupakan proses caching sederhana untuk mempercepat aplikasi web. Memcached menyimpan banyak data yang sering diakses dan mengurangi kebutuhan query basis data yang berulang, sehingga menghasilkan waktu respon yang lebih cepat. Memcached memiliki kelemahan data hanya disimpan sementara dan akan hilang jika instan Memcached gagal.

Gambar 2. 1 Proses *Memcached* (Hidayat dan Rahmatulloh, 2019).

2.4 Redis

Redis adalah NoSQL database berbasis key-value dalam menyimpan data dan memiliki popularitas yang tinggi di komunitas pengembangan perangkat (Bustamin, 2021).

Redis memiliki kelebihan throughput yang besar dan rendah response time karena data disimpan didalan memory, selain itu Redis juga dapat dijadikan sebagai sistem yang terdistribusi (Kusuma, 2019). Redis memiliki kelemahan yaitu dapat menyimpan data seluruhnya di memory, yang berarti sensitif terhadap kehilangan data jika terjadi crash atau shutdown.

2.5 Sistem Terdistribusi

Sistem terdistribusi adalah sebuah sistem yang komponennya berada pada jaringan komputer. Komponen-komponen ini saling berkomunikasi dan

berkoordinasi hanya dengan pengiriman pesan (*message passing*). *Redis* melibatkan lebih dari satu komputer dalam suatu infrastruktur jaringan, baik lokal, internet, maupun nirkabel. Sistem terdistribusi tidak hanya melakukan komunikasi antara satu proses pada satu komputer dengan proses pada komputer yang lain, tetapi juga mempertimbangkan ketersediaan infrastruktur jaringan yang memadai serta dukungan standarisasi sistem yang terbuka (Syahrir, Zulfikri, dan Azwar, 2022).

2.6 Memtear

Memtear adalah alat benchmaking berperforma tinggi yang di kembangkan oleh Redis Labs. Memtear memiliki fitur kustomisasi untuk menghasilkan beberapa workload pattern. Memtier dapat mengatur rasio antara read and write operations. Memtier memberikan pilihan untuk mengatur jumlah request yang akan dilakukan oleh setiap client atau durasi waktu untuk menjalankan suatu pengujian. Memtier telah digunakan dalam beberapa karya ilmiah sebagai alat perbandingan (Magalhaes, Monteiro, Brayner, dan Moraes, 2021).

2.7 Penelitian Terkait

Tabel 2. 1 Penelitian Sejenis

No	Peneliti	Judul	Metode	Tools yang	State of The Art
				digunakan	
1.	(Febriyani,	Perbandingan Kinerja Redis,	Load	Wireshark	Pengujian kinerja IoT middleware menunjukkan bahwa
	Sakti	Mosquitto, dan MongoDB	Testing		Redis unggul dalam CPU Usage saat menulis data,
	Pramukantoro,	sebagai Message Broker			efisiensi <i>memory</i> , <i>runtime</i> , dan kecepatan penanganan
	dan Bakhtiar,	pada IoT <i>Middleware</i>			data melalui MQTT. MongoDB memiliki kinerja terbaik
	2019)				dalam disk I/O dan skalabilitas, serta unggul dalam <i>time</i>
					subscribe dan concurrent subscribe. Sementara itu,
					mosquitto menunjukkan performa terbaik dalam
					kecepatan menulis data, menerima data melalui CoAP,
					dan <i>time publish</i> melalui CoAP serta <i>concurrent publish</i> .
2.	(M. L. Cahyadi,	Analisis Perbandingan	Load	Httperf	Pengujian kinerja web server Nginx dan Litespeed pada
	Setiawan Heri,	Kinerja Web Server Nginx	Testing		VPS dengan OS debian menunjukkan bahwa Nginx
	dan Mair,	dan <i>Litespeed</i> Menggunakan			lebih unggul dalam hal throughput, connection, dan
	2023)				reply time. Dengan menggunakan httperf, ditemukan

No	Peneliti	Judul	Metode	Tools yang	State of The Art
				digunakan	
		Httperf Dengan Sistem			bahwa Nginx memiliki rata-rata throughput 128719.2
		Operasi Debian			KB/s, connection 0.33 ms, dan reply time 0.15 ms,
					sementara Litespeed memiliki throughput 57405.6 KB/s,
					connection 0.34 ms, dan reply time 0.23 ms. Hasil ini
					mengindikasikan bahwa Nginx menawarkan performa
					yang lebih baik untuk kecepatan dan responsivitas
					dibandingkan Litespeed.
3.	(Alam dan Dewi,	Performance Testing	Load	JMeter	Aplikasi bandungtanginas.id dapat bekerja melayani
	2022)	Analysis Of	Testing		request tanpa error saat diberikan beban oleh 50
		Bandungtanginas			pengguna secara bersamaan. Hasil tes dikategorikan baik
		Application With Imeter			jika mengacu pada target SLA (Service Level
					Agreement).
4.	(Prasetyo dan	Analisis Perbandingan	Load	JMeter	Kubernetes cluster memberikan performa yang
	Salimin, 2021)	Performa Web Server	Testing		bagus dengan response time yang lebih cepat
		Docker Swarm dengan			dibanding docker swarm dari load testing 300
		Kubernetes Cluster			thread dan 2000 thread untuk web server nginx
					yang dilakukan. <i>Docker</i> swarm dapat memberikan

No	Peneliti	Judul	Metode	Tools yang	State of The Art
				digunakan	
					performa yang tidak jauh beda dari Kubernetes
					cluster dengan menggunakan resource yang lebih
					efisien.
5.	(Busran dan	Analisis Perbandingan	Load	JMeter	Penelitian ini menunjukkan bahwa Nginx lebih efisien
	Ridwan Ahmad,	Performa Apache Web	Testing		dan cepat daripada Apache dalam response time dan
	2020)	Server Dan Nginx			throughput. Pengujian response time dengan 100, 1000,
		Menggunakan Apache			dan 10000 request, Nginx memiliki rata-rata masing-
		Jmeter			masing 155ms, 225ms, dan 266ms, dibandingkan
					Apache dengan 280ms, 365ms, dan 400ms. Hasil
					pengujian throughput, Nginx juga unggul, mengeksekusi
					lebih banyak <i>request</i> dalam 100, 500, dan 1000 detik
					dibandingkan Apache, menunjukkan kinerja yang lebih
					baik secara keseluruhan.
6.	(Alzaidi dan	Benchmarking Redis and	Load	Yahoo Cloud	Penelitian ini menunjukkan bahwa basis data HBase
	Vagner, 2022)	HBase NoSQL Databases	Testing	Service	menawarkan kelebihan yang signifikan dalam hal
		using Yahoo Cloud Service		Benchmark	skalabilitas dan fleksibilitas struktural, yang
		Benchmarking tool			mempermudah pengembangan perangkat lunak.

No	Peneliti	Judul	Metode	Tools yang	State of The Art
				digunakan	
					Pengujian menggunakan Yahoo Cloud Service
					Benchmarking menunjukkan bahwa HBase memiliki
					kinerja yang hampir sama dengan <i>Redis</i> saat
					menggunakan kurang dari 7 thread. HBase
					menunjukkan throughput yang lebih tinggi dibandingkan
					Redis ketika jumlah thread ditingkatkan.
7.	(Kabakus, 2020)	A Performance Comparison	Load	Eksekusi	Penelitian ini menilai kinerja berbagai implementasi
		of Java Cache Memory	Testing	Query	memory cache. Hasil dari pengujian menunjukkan
		Implementations			bahwa arsitektur memory cache sangat mempengaruhi
					kinerja dan tidak ada satu pun cache Java yang unggul di
					semua aspek. Kombinasi beberapa cache Java mungkin
					memberikan kinerja terbaik. caching terdistribusi
					meningkatkan waktu eksekusi. Perlu dievaluasi memory
					cache yang mendukung mode terdistribusi dan desain
					arsitektur cache secara rinci, serta berbagai skenario
					penghapusan data untuk memahami kinerja dalam
					skenario spesifik.

No	Peneliti	Judul	Metode	Tools yang	State of The Art
				digunakan	
8.	(Kausar, Nasar,	A Study of Performance and	Load	Yahoo Cloud	Uji coba pada MongoDB 4.4, Cassandra 4.0.3, dan
	dan	Comparison of NoSQL	Testing	Service	Redis 6.2.6 dengan berbagai beban kerja hingga
	Soosaimanickam,	Databases: MongoDB,		Benchmark	1.000.000 operasi menunjukkan bahwa optimasi NoSQL
	2022)	Cassandra, and Redis Using			seperti pemanfaatan cache memory mempercepat waktu
		YCSB			eksekusi. Redis unggul dalam kinerja baca karena
					menggunakan memori volatile. MongoDB lebih baik
					dalam operasi baca dan pemindaian dibandingkan
					Cassandra. Cassandra mengungguli Redis dalam
					pemindaian. MongoDB menunjukkan response time
					lebih rendah kecuali dalam beban kerja tinggi,
					menjadikannya basis data NoSQL dengan performa
					terbaik. Evaluasi NoSQL di cloud dan pengujian basis
					data lainnya dapat memperluas penelitian ini.
9.	(Banja, Ilić,	Microsoft Sql Server And	Load	Eksekusi	Penelitian ini membandingkan kinerja Microsoft SQL
	Kopanja,	Oracle:Comparativ	Testing	Query	Server dan Oracle. SQL Server mengeksekusi query
	Zlatković, dkk.,	Performance Analysis			lebih cepat. Oracle, mendukung berbagai sistem operasi
	2021)				dan bahasa pemrograman, menawarkan keamanan

No	Peneliti	Judul	Metode	Tools yang	State of The Art
				digunakan	
					multi-layer yang lebih kompleks dan fleksibilitas,
					membuatnya cocok untuk aplikasi yang memerlukan
					keamanan tinggi dan dukungan multi-platform.
					Penelitian ini membantu memilih DBMS yang sesuai
					berdasarkan kebutuhan kinerja, fleksibilitas, dan
					keamanan.
10.	(Pandey, 2020)	Performance Benchmarking	Load	Yahoo Cloud	Penelitian ini membandingkan kinerja cloud database
		and Comparison of Cloud-	Testing	Service	MongoDB (NoSQL) dan MySQL (Relasional)
		Based Databases MongoDB		Benchmark	menggunakan YCSB. MongoDB unggul dalam
		(NoSQL) Vs MySQL			penanganan data tidak terstruktur dengan performa lebih
		(Relational) using YCSB			baik pada beban kerja baca-tulis tinggi, sementara
					MySQL lebih baik untuk transaksi dengan integritas data
					tinggi, cocok untuk aplikasi yang memerlukan
					konsistensi dan struktur data.

2.8 Matriks Penelitian

Tabel 2. 2 Matriks Penelitian

						To	ols											Ol	ject								
No	Penulis	Judul	JMeter	Memtear	HTTPERF	YCSB	Wireshark	Eksekusi Query	MongoDB	Apache	Oracle	Microsoft SQL	Nginx	HBase	Redis	Mosquitto	Litespeed	Docker Swarn	Kubernetes Cluster	Website	Casandra	Hazecast	Memcached	Ignite	Cache 2K	Guava	Eh Cache
	(Echrissoni	Perbandingan																									
	(Febriyani,	Kinerja <i>Redis</i> ,																									
	Sakti	Mosquitto, dan																									
1.	Pramukant	MongoDB					٧		V						٧	٧											
	oro, dan	sebagai Message																									
	Bakhtiar,	Broker pada IoT																									
	2019)	Middleware																									
2.	(ML. Cahyadi, Setiawan Heri, dan Mair, 2023)	Analisis Perbandingan Kinerja Web Server Nginx dan Litespeed Menggunakan Httperf Dengan																									

						To	ols											Ol	ject								
No	Penulis	Judul	JMeter	Memtear	HTTPERF	YCSB	Wireshark	Eksekusi Query	MongoDB	Apache	Oracle	Microsoft SQL	Nginx	HBase	Redis	Mosquitto	Litespeed	Docker Swarn	Kubernetes Cluster	Website	Casandra	Hazecast	Memcached	Ignite	Cache 2K	Guava	Eh Cache
		Sistem Operasi Debian			V				٧				٧				v										
3.	(Alam dan Dewi, 2022)	Performance Testing Analysis Of Bandungtanginas Application With Jmeter	٧							V										V							
4.	(Prasetyo dan Salimin, 2021)	Analisis Perbandingan Performa Web Server Docker Swarm dengan Kubernetes Cluster	V															V	V								
5.	(Busran dan Ridwan Ahmad, 2020)	Analisis Perbandingan Performa Apache Web Server Dan Nginx	V							V			V														

						To	ols											Ol	bject								
No	Penulis	Judul	JMeter	Memtear	HTTPERF	YCSB	Wireshark	Eksekusi Query	MongoDB	Apache	Oracle	Microsoft SQL	Nginx	HBase	Redis	Mosquitto	Litespeed	Docker Swarn	Kubernetes Cluster	Website	Casandra	Hazecast	Memcached	Ignite	Cache 2K	Guava	Eh Cache
		Menggunakan Apache Jmeter																									
6.	(Alzaidi dan Vagner, 2022)	Benchmarking Redis and HBase NoSQL Databases using Yahoo Cloud Service Benchmarking tool				V								√	√												
7.	(Kabakus, 2020)	A Performance Comparison of Java <i>Cache</i> Memory Implementations						V														V	V	V	V	V	V
8.	(Kausar, Nasar, dan Soosaimani ckam, 2022)	A Study of Performance and Comparison of NoSQL Databases: MongoDB,				V			V						V						V						

						To	ols											Ol	bject								
No	Penulis	Judul	JMeter	Memtear	HTTPERF	YCSB	Wireshark	Eksekusi Query	MongoDB	Apache	Oracle	Microsoft SQL	Nginx	HBase	Redis	Mosquitto	Litespeed	Docker Swarn	Kubernetes Cluster	Website	Casandra	Hazecast	Memcached	Ignite	Cache 2K	Guava	Eh Cache
		Cassandra, and Redis Using YCSB																									
9.	(Banja, Ilić, Kopanja, Zlatković, dkk., 2021)	Microsoft Sql Server And Microsoft Sql Server And Oracle:Comparati v Performance Analysis						V			V	V															
10.	(Pandey, 2020)	Performance Benchmarking and Comparison of Cloud- Based Databases MongoDB (NoSQL) Vs MySQL (Relational) using YCSB				V			V			V															

						Too	ols											OŁ	ject								
No	Penulis	Judul	JMeter	Memtear	HTTPERF	YCSB	Wireshark	Eksekusi Query	MongoDB	Apache	Oracle	Microsoft SQL	Nginx	HBase	Redis	Mosquitto	Litespeed	Docker Swarn	Kubernetes Cluster	Website	Casandra	Hazecast	Memcached	Ignite	Cache 2K	Guava	Eh Cache
11.	Nisrina Khairunisa Anwar	Analisis Perbandingan Kinerja Redis dan Memcached sebagai Solusi Server Side Caching dalam Mengoptimalkan Infrastruktur server		V											V								V				

Berdasarkan matriks penelitian pada tabel 2.2, perbedaan penelitian ini dengan beberapa penelitian sebelumnya terletak pada objek pengujian yaitu sistem *cache Redis* dan *Memcached*. Penelitian sebelumnya belum ada yang membandingkan kinerja dari kedua sistem, maka dari itu penelitian ini bertujuan untuk menguji kinerja sistem *cache* lalu membandingan sistem *cache* mana yang lebih unggul pada berbagai variasi beban pengujian yang diberikan.