BAB II

TINJAUAN PUSTAKA

1.1 Landasan Teori

1.1.1 Data mining

Menurut (Han et al., n.d.) *Data mining* umumnya digunakan sebagai proses ekstraksi pola atau pengetahuan yang bermanfaat dari sebuah dataset besar atau kompleks. *Data mining* merupakan kumpulan proses yang menggabungkan Teknik-teknik yang mempunyai tujuan untuk menemukan informasi yang belum diketahui pada data yang sudah dikumpulkan (Nabila et al., 2021)

1. Pengelompokkan Data mining

Menurut (Yuli Mardi, n.d.) *data mining* dibagi menjadi beberapa kelompok berdasarkan tugas yang dilakukan sebagai berikut:

1. Data Selection

Pemilihan atau penentuan data dari beberapa sampel data yang dilakukan sebelum memulai fase mengekstraksi data dalam *Knowledge Discovery in Database*.

2. Pre-processing/Cleaning

Cara paling umum untuk membersihkan data sebelum proses *data mining* adalah yang menjadi fokus dalam *Knowledge Discovery in Database*.

3. Transformation

Cara yang paling umum untuk menyatukan data yang telah dipilih, yang sangat tergantung pada jenis atau contoh data yang akan dicari dalam basis data.

4. Data mining

Data mining adalah cara untuk menemukan pola atau informasi data yang menarik dari dalam data terpilih dengan menggunakan metode dan algoritma tertentu.

5. Interpretation/Evaluation

Tahap ini mencakup pemeriksaan apakah informasi data yang ditemukan bertentangan dengan kenyataan atau spekulasi sebelumnya.

6. Knowledge Presentation

Tahap ini merupakan memberikan dan menyajikan informasi mengenai metode yang digunakan untuk memberikan informasi kepada pengguna.

1.1.2 Clustering

Analisis *cluster* adalah Teknik multivariat yang mempunyai tujuan utama untuk mengelompokkan objek penelitian berdasarkan karakteristik yang dimiliki (A.S Awalluddin & Taufik, 2017). Analisis *Cluster* mengklasifikasi objek sehingga setiap objek yang paling dekat kesamaannya dengan objek lain berada dalam *cluster* yang sama (Mara & Intisari, 2013)

1. Penentuan Jumlah κ Optimal

Terdapat metode yang selalu digunakan untuk memastikan jumlah κ yang paling sering digunakan yaitu *Elbow Method*, *Silhouette Analysis*, dan *Gap Statistic*.

1) Elbow Method

Elbow Method adalah metode yang digunakan untuk menghasilkan informasi guna menentukan jumlah kelompok yang membentuk siku pada titik tertentu. (Putu et al., 2015) Menurut (Maori, 2023) metode

Elbow digunakan untuk menentukan jumlah optimal dari cluster dalam analisis clustering. Proses ini melibatkan penentuan jumlah cluster κ dengan Sum of Squared Errors (SSE) untuk setiap nilai κ .

Berikut formula dari Elbow Method:

$$SSE = \sum_{i=1}^{\kappa} \sum_{xi \in C_i} D(x_i, C_i)^2$$
(2.1)

Dimana:

- a) κ adalah jumlah *cluster*.
- b) $x_i \in C_i$ adalah nilai keanggotaan titik data x_i ke pusat kelompok C_i .
- c) C_i adalah pusat *cluster* ke- i.
- d) $D(x_i, C_i)$ adalah jarak dari titik x_i ke kelompok C_i yang diikuti.

2) Metode Silhouette Analysis

Menurut (Elfan, 2023) metode *Silhouette* adalah salah satu alat yang digunakan untuk mengukur seberapa mirip sebuah objek dengan *cluster*nya sendiri dibandingkan dengan *cluster* lainnya. Nilai *silhouette* berkisar antara -1 dan 1. Nilai mendekati 1 menunjukkan bahwa data berada di *cluster* yang tepat, sedangkan nilai mendekati -1 menunjukkan bahwa data mungkin berada di *cluster* salah.

Berikut formula dari Silhouette Analysis:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
 (2.2)

Dimana:

- a) s(i) adalah nilai Silhouette untuk data point i.
- b) a(i) adalah jarak rata-rata antara i dan semua poin dalam clusternya sendiri.

c) b(i) adalah jarak rata-rata antara i dan semua poin dalam *cluster* terdekat yang i tidak menjadi bagiannya.

3) Gap Statistic

Metode *Gap Statistic* merupakan Teknik yang digunakan untuk menentukan jumlah *cluster* dalam data *clustering*. Metode ini membandingkan kinerja *clustering* pada data asli dengan kinerja pada data acak yang dihasilkan dari distribusi yang sama. Tujuan dari *Gap Statistic* untuk menemukan jumlah *cluster* yang memaksimalkan perbedaan (GAP) antara data asli dan data acak, yang menunjukkan bahwa struktur *clustering* pada data asli lebih signifikan dari pada yang dihasilkan secara acak (Tibshirani et al., 2001). Menurut (Tibshirani et al., 2001) *Gap statistic* digunakan untuk membandingkan total *within-cluster variation* untuk berbagai angka *cluster* dengan ekspektasi *null reference distribution* dari data. Berikut formula *gap statistic*:

$$\operatorname{Gap}(\kappa) = \frac{1}{B} \sum_{b=1}^{B} \log (W_k)$$
 (2.4)

Dimana:

- a) κ adalah jumlah kluster
- b) B adalah jumlah dari referensi *bootstraps*.
- c) W_{κ} adalah within-cluster dispersion untuk κ cluster.
- d) W_{κ}^{b} adalah within-cluster dispersion dari bootstrap b.

Within-cluster dispersion W_{κ} :

$$W_{\kappa} = \sum_{i=1}^{\kappa} \frac{1}{2|C_i} \sum_{x,y \in C_i} ||x - y||^2$$
 (2.5)

Dimana:

- a) C_i adalah cluster i.
- b) $|C_i|$ adalah jumlah elemen dalam *cluster* C_i .
- c) $||x y||^2$ adalah jarak kuadrat antara dua titik data x dan y.

1.1.3 Algoritma K-Medoids

K-Medoids atau Partitioning Around Medoids (PAM) adalah algoritma clustering yang mirip dengan K-Means. Perbedaan dari kedua algoritma tersebut yaitu PAM menggunakan objek sebagai perwakilan (medoid) sebagai pusat cluster untuk setiap cluster, sedangkan K-Means pusat cluster menggunakan nilai rata-rata. (Gunawan et al., 2020)

Algoritma *K-Medoids* memiliki kelebihan yaitu untuk mengatasi kelemahan dari *K-Means* yang sensitif terhadap *noise* dan *outlier*, dimana objek dengan nilai yang besar yang memungkinkan menyimpang dari distribusi data. Kelebihan yang lainnya yaitu hasil dari *clustering* tidak bergantung pada urutan dataset (Kamila et al., 2019). Menurut (Dyang et al., 2017) Langkah-langkah algoritma *K-Medoids* yaitu:

- 1. Inisialisasi atau tentukan pusat *cluster* sebanyak *k* (jumlah *cluster*)
- 2. Hitung jarak setiap objek *cluster* terdekat dengan menggunakan persamaan Euclidean Distance

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
(2.6)

- 3. Pilih secara acak objek *cluster* sebagai *medoid* baru.
- 4. Hitung jarak setiap objek *cluster* dengan *medoids* baru.

- 5. Hitung total simpangan (*S*) dengan menghitung *distance* baru total *distance* lama. Jika S<0, maka tukar objek dengan data *cluster* untuk membentuk sekumpulan *k* objek baru sebagai *medoid*.
- 6. Ulangi Langkah 3 sampai 5 hingga tidak terjadi perubahan *medoid*, sehingga didapatkan *cluster* beserta anggota *cluster* masing-masing.

1.1.4 Penjualan dan Pemasaran

Penjualan adalah proses pertukaran produk atau jasa dengan uang atau nilai lainnya antara penjual dan pembeli. Ini adalah salah satu fungsi bisnis utama yang bertujuan untuk menghasilkan pendapatan dan mempromosikan pertumbuhan perusahaan. Definisi ini dapat ditemukan dalam berbagai sumber, termasuk bukubuku teks tentang manajemen bisnis, situs web perusahaan, dan publikasi industri (Kotler & Armstrong, n.d.)

Seorang pakar pemasaran (Philip et al., 2021) mendefinisikan pemasaran sebagai proses sosial dan manajerial dimana individu dan kelompok mendapatkan apa yang mereka butuhkan dan inginkan melalui penciptaan, penawaran, dan pertukaran produk yang bernilai dengan pihak lain.

1.1.5 Produk

Produk adalah segala sesuatu yang dapat ditawarkan kepada pasar untuk memenuhi kebutuhan, mengingat bahwa produk tersebut dapat menjadi fisik (barang) atau non-fisik (jasa) (Kotler & Armstrong, n.d.)

1.1.6 *Python*

Python adalah scripting language yang berorientasi objek (Manalu & Gunadi, 2022). Python memiliki struktur data tingkat tinggi yang efisien dan

pendekatan yang sederhana namun efektif untuk pemrograman berorientasi objek (Python Software Foundation, 2024).

2.2 Penelitian Terkait

2.2.1 State Of The Art

Berdasarkan rumusan masalah dan tujuan penelitian yang telah dibuat, maka dilakukan penyusunan *literature review* dari penelitian sebelumnya yang berkaitan dengan *data mining* metode *clustering* dan algoritma *K-Medoids*. Beberapa penelitian sebelumnya yang dilakukan adalah, sebagai berikut:

Tabel 2. 1 Penelitian Sebelumnya

No	Penulis dan Tahun	Judul	Hasil
1	(Syahfitri et al., 2023)	Pengelompokan Produk Berdasarkan	Pada penelitian ini mengelompokkan persediaan barang untuk
		Data Persediaan Barang Menggunakan	memudahkan pengelolaan stok toko, ditemukan 7 <i>cluster</i> optimal.
		Metode Elbow Dan K-Medoid	Tanpa <i>elbow</i> data dibagi menjadi 3 <i>cluster</i> berdasarkan kuantitas
			terjual dan tersedia.
2	(Yustika et al., 2021)	Analisis Metode <i>K-Medoids</i> Pada	Dengan hasil yang sama antara perhitungan manual dengan
		Penjualan Smartphone Vivo Di Kota	algoritma K-Medoids dapat diterapkan dalam pengelompokkan
		Pematangsiantar	smartphone Vivo berdasarkan data penjualan dengan persentase
			keakuratan sebesar 100%.

3	(Robiansyah &	Akurasi Pemberian Intensif	Penelitian denganmenggunakan metode ini mendapatkan hasil
	Nurcahyo, 2021)	Menggunakan Algoritma K- Medoids	berupa pengelompokkan 3 yaitu tingkat kedisiplinan baik
		Terhadap TingkatKedisiplinan	berjumlah 12 pegawai, tingkat kedisiplinan cukup berjumlah 8
		Pegawai	pegawai, tingkat kedisiplinan kurang berjumlah 5 pegawai.
4	(Arifandi et al., 2021)	Implementasi algoritma K-	Berdasarkan kajian penelitian tersebut dapat disimpulkan bahwa
		Medoids untuk clustering	pada pengelompokkan total kasus terinfeksi COVID 19
		terinfeksi kasus COVID-19 Di	Berdasarkan kelurahan terdapat 3 cluster, yaitu cluster 0, cluster 1,
		DKI Jakarta	dan cluster 2.
5	(Berliana et al., 2023)	Clustering Data Persediaan Barang	Pada penelitian ini metode DBSCAN dengan menggunakan
		Menggunakan Metode Elbow dan	metode Elbow menghasilkan 0,1eps, 1 minPts dan memperoleh
		DBSCAN	hasil 144 <i>cluster</i> dan 0 data noise. Sebanyak 144 set tersebut
			dikumpulkan berdasarkan inventori yang besar. Oleh karena itu,
			pengujian metode DBSCAN dilakukan pada 0,1eps, 13 minPts
			tanpa attachment dan memperoleh 3 <i>cluster</i> dan 959 data noise.
			Ketiga kelompok yang terbentuk berbeda-beda pada setiap
			kelompoknya. Kelompok 1 merupakan produk dengan penjualan

6	(Wira et al., 2019)	Implementasi metode <i>K-Medoids</i>	atau inventori terendah, Kelompok 0 merupakan produk dengan penjualan dan inventori di bawah tengah dibandingkan dengan Kelompok 0, dan Kelompok 2 merupakan produk dengan penjualan dan inventori tertinggi. Penelitian ini menggunakan metode k-medoids agar dapat
		Clustering untuk mengetahui pola pemilihan program studi mahasiswa baru tahun 2018 di Universitas Kanjuruhan Malang	diketahui pola pemilihan program studi bagi mahasiswa baru di lingkungan Universitas Kanjuruhan Malang.
7	(Maulana & Sundari, 2022)	Penerapan Algoritma K-Medoids Dalam <i>Cluster</i> isasi Penyebaran Tempat Ibadah Di Sumatera Utara	Penelitian ini melakukan hasil bahwa proses <i>clustering</i> penyebaran rumah ibadah di sumatera utara yang dilakukan dari tahun 2011 sampai dengan tahun 2020 yang dibagi menjadi 5 <i>cluster</i> menghasilkan pada <i>cluster</i> 1 berjumlah 44 anggota, <i>cluster</i> 2 berjumlah 23 anggota, <i>cluster</i> 3 berjumlah 49 anggota, <i>cluster</i> 4 berjumlah 64, dan <i>cluster</i> 5 berjumlah 150 anggota.

8	(Oktavianti Hermadi et	Implementasi algoritma K-Medoids	Penelitian ini untuk mengelompokkan keuntungan sementara agar
	al., n.d.)	Clustering untuk mencari keuntungan	nantinya dapat mempermudah untuk memperoleh keputusan dan
		sementara dalam laporan keuangan	dipergunakan untuk kepentingan instansi tersebut.
9	(Nurlaela et al., 2020)	Algoritma K-Medoids Untuk	Hasil yang didapat pada penelitian ini yaitu dataset penyakit maag
		Clustering Penyakit Maag Di	di kabupaten karawang pada tahun 2017 sampai 2019 memiliki
		Kabupaten Karawang	cluster optimal sebanyak 2 cluster, dimana cluster 1 dengan 35
			daerah dikategorikan rendah, dan pada <i>cluster</i> 2 dengan 15 daerah
			yang dikategorikan tinggi, dan menghasilkan nilai silhouette
			coefficient sebesar 0,5561.
10	(Gustrianda & Mulyana,	Penerapan Data mining dalam	Hasil penelitian menunjukkan bahwa nilai Davies Bouldin dari
	2022)	pemilihan produk unggulan dengan	algoritma K-Means adalah -0,430, sedangkan nilai Davies Bouldin
		metode algoritma K-Means dan K-	K-Means adalah -1,392 yang menunjukkan bahwa nilai Davies
		Medoids	Bouldin dari metode K-Means merupakan nilai Davies Bouldin
			yang paling kecil, sehingga penggunaan metode K-Means untuk

			mengelompokkan hasil merupakan pendekatan yang lebih tepat
			digunakan untuk permasalahan ini.
11	(Ayu et al., 2019)	Analisis Perbandingan Metode Elbow	Analisis perbandingan algoritma k-Medoid <i>cluster</i> ing metode
		dan Silhouette pada Algoritma	Elbow dan Silhouette menunjukkan bahwa wilayah Bali
		Clustering K-Medoids dalam	merupakan wilayah dengan kegiatan kerajinan terbanyak. Pada
		Pengelompokan Produksi Kerajinan	tahun 2017, jumlah industri air rumah tangga di wilayah Bali
		Bali	sebanyak 5.574. Proses <i>cluster</i> ing K-Medoid dengan metode
			penghitungan Silhouette menunjukkan hasil yang lebih baik. Hal
			ini dikarenakan nilai DBI proses perakitan K-Medoid memiliki
			rata-rata koefisien <i>silhouette</i> sebesar 1,06, lebih rendah
			dibandingkan nilai DBI proses perakitan K-Medoid dengan
			metode Elbow sebesar 1,10.
12	(Prasetyaningrum &	Perbandingan Algoritma K-Means Dan	Hasil yang didapatkan pada penelitian ini yaitu algoritma K-means
	Susanti, 2023)	K-Medoids Untuk Pemetaan Hasil	mendapat hasil nilai yang lebih kecil dengan nilai 0,296 sedangkan
		Produksi Buah-Buahan	hasil algoritma K-Medoids dengan nilai lebih besar 0,507.

			Algoritma terbaik untuk <i>cluster</i> isasi hasil produksi buah-buahan
			yang ada di kabupaten Kotawaringin Timur adalah algoritma K-
			Means berdasarkan hasil nilai DBI yang diperoleh.
13	(Nurina Sari &	Penerapan Clustering DBSCAN Untuk	Ketika teknologi klasterisasi DBSCAN diaplikasikan pada lahan
	Primajaya, 2019)	Pertanian Padi Di Kabupaten	sawah, dihasilkan dua <i>cluster</i> dengan karakteristik yang berbeda.
		Karawang	Hasil klasterisasi menunjukkan adanya perbedaan curah hujan, luas
			lahan yang mempengaruhi produksi, jumlah serangan hama, dan
			jenis hama yang menyerang lahan pertanian. Perbandingan evaluasi
			kinerja teknologi <i>cluster</i> isasi DBSCAN dilakukan dengan berfokus
			pada nilai rata-rata lebar bayangan. Ukuran bidang siluet
			menggambarkan kualitas massa yang terbentuk. Hasil percobaan
			penelitian ini menunjukkan hasil tertinggi sebesar 0,74 yang terbagi
			menjadi dua kelompok. Hal ini menunjukkan bahwa blok yang
			terbentuk memiliki struktur yang kuat.
14	(Pratikto & Damastuti,	Clusterisasi Menggunakan	Pada penelitian ini menggunakan metode <i>Agglomerative</i>
	2018)	Agglomerative Hierarchical	Hierarchical Clustering (AHC) untuk memodelkan wilayah banjir

	Clustering Untuk Memodelkan	di jawa timur, terdapat 3 wilayah banjir di jawa timur, terdapat 3
	Wilayah Banjir	cluster berdasarkan potensi terjadinya banjir yaitu rendah, sedang
		dan tinggi, kinerja <i>cluster</i> dievaluasi menggunakan <i>cophenetic</i>
		correlation coefficient, dengan metode average linkage
		memberikan solusi terbaik hasil studi divisualisasikan dalam
		bentuk Sistem Informasi Geografis (gis), agar memudahkan
		identifikasi daerah berpotensi banjir.

2.2.2 Matriks Penelitian

Tabel 2.2 merupakan matriks penelitian yang berfokus untuk menyelesaikan masalah pada metode dan algoritma. Selain itu, matriks ini dapat memberikan informasi tentang perbedaan penelitian yang akan dilakukan dan penelitian terdahulu.

Tabel 2. 2 Matriks Penelitian

		Ruang Lingkup									
		Algoritma		Objek Penelitian			Metode			de	
N	Penulis dan Tahun	K-Means	K-Medoids	DBSCAN	Hierarchical Clustering	Karyawan	Implementasi	Elbow Method	Silhouette Analysis	Gap Statistic	Davies Bouldin Index

1	(Rindiawan, 2024)	-	V	-	-		-			V	-
2	(Yustika et al., 2021)	-	V	-	-	-	$\sqrt{}$	-	-	V	-
3	(Syahfitri et al., 2023)	-		1	1	$\sqrt{}$	-	$\sqrt{}$	1	-	-
4	(Robiansyah & Nurcahyo, 2021)	-		1	ı	1	$\sqrt{}$	ı	ı		-
5	(Arifandi et al., 2021)	-		ı	-	-	$\sqrt{}$	$\sqrt{}$	ı		-
6	(Berliana et al., 2023)	-	-	$\sqrt{}$	1	1	$\sqrt{}$	$\sqrt{}$	ı	-	-
7	(Wira et al., 2019)	-		ı	1	$\sqrt{}$	ı	ı	$\sqrt{}$	-	-
8	(Fialine et al., 2021)	-		ı	1	1	$\sqrt{}$	ı	$\sqrt{}$	-	-
9	(Oktavianti Hermadi et al., n.d.)	-		-	-	-	$\sqrt{}$	-	-	-	$\sqrt{}$
10	(Nasari et al., 2023)	-		ı	-	-	$\sqrt{}$	-	-	-	$\sqrt{}$
11	(Ayu et al., 2019)	-		ı	-	$\sqrt{}$	-	$\sqrt{}$	\checkmark	-	$\sqrt{}$
12	(Prasetyaningrum & Susanti, 2023)			ı	-	-	$\sqrt{}$	1	ı	-	$\sqrt{}$
13	(Nurina Sari & Primajaya, 2019)	-	-	$\sqrt{}$	ı	1	$\sqrt{}$	1	\checkmark	-	-
14	(Pratikto & Damastuti, 2018)	-	-	-	√		√	√		-	-
15	(Gustrianda & Mulyana, 2022)	_		-	-		-	-	-	-	