BAB III

OBJEK DAN METODE PENELITIAN

3.1 Objek Penelitian

Penelitian ini berjudul "Analisis Pengaruh upah minimum provinsi, tingkat pengangguran terbuka, investasi dan sanitasi terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023" Objek penelitian ini adalah upah minimum provinsi (UMP), tingkat pengangguran terbuka (TPT), investasi, sanitasi dan kemiskinan di enam provinsi yang ada di Pulau Jawa yang meliputi DKI Jakarta, Jawa Barat, Jawa Tengah, DI Yogyakarta, Jawa Timur dan Banten.

3.2 Metode Penelitian

Metode penelitian menurut Sugiyono (2023:2) merupakan cara ilmiah untuk mendapatkan data dengan tujuan dan kegunaan tertentu. Cara ilmiah berarti kegiatan penelitian itu didasarkan pada ciri-ciri keilmuan yaitu rasional, empiris, dan sistematis. Dalam penelitian ini metode yang digunakan adalah metode kuantitatif, data dalam penelitian ini berdasarkan data kombinasi *cross section* yang disandingkan dengan data *time series* (data panel) dari tahun 2015-2023.

3.2.1 Jenis Penelitian

Jenis penelitian yang dilakukan dalam penelitian ini adalah penelitian kuantitatif dengan pendekatan deskriptif. Data yang digunakan adalah data kuantitatif. Data yang diperoleh dalam penelitian ini bersumber dari hasil publikasi instansi tertentu yaitu dari Badan Pusat Statistik (BPS).

3.2.2 Operasionalisasi Variabel

Menurut Sugiyono (2023:68), variabel penelitian adalah suatu atribut atau sifat atau orang atau nilai dari orang, objek atau kegiatan yang mempunyai variasi tertentu yang ditetapkan oleh peneliti untuk dipelajari kemudian ditarik kesimpulannya.

1. Variabel Independen

Menurut Sugiyono (2023:69), variabel independen (variabel bebas) adalah variabel yang mempengaruhi atau yang menjadi sebab perubahannya atau timbulnya variabel terikat. Variabel independen yang digunakan dalam penelitian ini yaitu upah minimum provinsi, tingkat pengangguran terbuka, investasi dan sanitasi pada enam provinsi di Pulau Jawa pada tahun 2015-2023.

2. Variabel Dependen

Menurut Sugiyono (2023:69), variabel dependen (variabel terikat) adalah variabel yang dipengaruhi atau menjadi akibat, karena adanya variabel bebas. Variabel dependen yang digunakan dalam penelitian ini yaitu kemiskinan pada enam Provinsi di Pulau Jawa tahun 2015-2023.

Untuk memudahkan pemahaman terhadap variabel yang dianalisis dalam penelitian ini, maka definisi variabel yang digunakan adalah sebagai berikut:

Tabel 3.1 Operasionalisasi Variabel

Variabel	Definisi Operasional	Simbol	Satuan	Skala
(1)	(2)	(3)	(4)	(5)
Kemiskinan	Persentase penduduk yang kebutuhan pokok perbulannya di bawah garis	Y	Persen	Rasio

	kemiskinan terhadap jumlah seluruh penduduk di Pulau Jawa tahun 2015-2023			
Upah Minimum Provinsi	Upah yang ditetapkan pemerintah melalui keputusan menteri yang dinilai dan diukur dari kebutuhan hidup minimum di Pulau Jawa tahun 2015-2023	X_1	Rupiah	Rasio
Tingkat Penganggura n Terbuka	Persentase penduduk yang tidak bekerja terhadap total angkatan kerja di Pulau Jawa tahun 2015-2023	X_2	Persen	Rasio
Investasi	Total nilai realisasi investasi penanaman modal dalam negeri di Pulau Jawa tahun 2015-2023	X ₃	Milyar rupiah	Rasio
Sanitasi	Persentase rumah tangga yang memiliki akses sanitasi layak terhadap banyaknya jumlah seluruh rumah tangga di Pulau Jawa tahun 2015- 2023	X4	Persen	Rasio

3.2.3 Teknik Pengumpulan Data

3.2.3.1 Jenis dan Sumber Data

Jenis data yang digunakan dalam penelitian ini yaitu data sekunder. Menurut Sugiyono (2023:194), data sekunder adalah data yang diperoleh peneliti tidak langsung dari objeknya, tetapi melalui sumber lain. Penelitian ini menggunakan data bersifat data panel, yaitu gabungan data *time series* selama 9 tahun periode tahun 2015-2023 dan data *cross section* enam provinsi di Pulau Jawa meliputi DKI Jakarta, Banten, Jawa Barat, Jawa Tengah, DI Yogyakarta, dan Jawa Timur. Penelitian ini mengambil data kemiskinan, upah minimum provinsi, tingkat pengangguran terbuka, investasi dan sanitasi dari website Badan Pusat Statistik (BPS).

3.2.4 Model Penelitian

Berdasarkan kerangka pemikiran yang telah diuraikan sebelumnya, maka peneliti menguraikannya dalam bentuk model penelitian. Pada penelitian ini terdiri dari variabel independent yaitu upah minimum provinsi (X_1) , tingkat pengangguran terbuka (X_2) , investasi (X_3) , sanitasi (X_4) dan variabel dependen yaitu tingkat kemiskinan (Y). Dalam model data panel, persamaan data panel dapat dituliskan sebagai berikut:

$$Y_{it} = \alpha + \beta_1 X_{1it} + \beta_2 X_{2it} + \beta_3 X_{3it} + \beta_4 X_{4it} + e_{it}$$

Keterangan:

Y : Tingkat Kemiskinan

 α : Konstanta

β1..β4 : Koefisien regresi variabel independen

X₁ : Upah Minimum Provinsi

X₂ : Tingkat Pengangguran Terbuka

 X_3 : Investasi X_4 : Sanitasi

e : Error term di waktu t untuk unit cross section i

i : cross section (Provinsi di Pulau Jawa)

t : *time series* (tahun 2015-2023)

3.3 Teknik Analisis Data

Analisis data adalah upaya mengolah data yang sudah tersedia dengan statistik dan dapat digunakan untuk menjawab rumusan masalah yang ada dalam penelitian. Penelitian ini menggunakan teknik analisis regresi data panel yang bertujuan untuk mengukur seberapa besar hubungan atau pengaruh antara variabel bebas (independen) dengan variabel terikat (dependen). Dan jenis data yang

digunakan dalam penelitian ini adalah data panel. Data panel adalah kombinasi antara data *cross section* dan data *time-series*. Alat analisis yang digunakan dalam penelitian ini adalah *Software Eviews* Versi 12

3.3.1 Statistik Deskriptif

Menurut Sugiyono (2023:206) statistik deskriptif adalah statistik yang digunakan untuk menganalisis data dengan cara mendeskripsikan atau menggambarkan data yang telah terkumpul sebagaimana adanya tanpa bermaksud membuat kesimpulan yang berlaku untuk umum atau generalisasi. Analisis deskriptif digunakan untuk mengetahui deskripsi dari variabel upah minimum provinsi, tingkat pengangguran terbuka, investasi dan sanitasi melalui pengujian hipotesis yang telah dikembangkan.

3.3.2 Model Analisis Regresi Data Panel

Data panel merupakan gabungan data *time series* dengan *cross section*. Dengan kata lain, data panel adalah data yang diperoleh dari data *cross section* yang diobservasi berulang pada unit objek yang sama pada waktu yang berbeda. Dengan demikian, akan diperoleh gambaran tentang perilaku beberapa objek tersebut selama beberapa periode waktu. Menurut Widarjono (2013) ada tiga model untuk meregresikan data, yaitu *common effect model, fixed effect model*, dan *random effect model*.

1. Common Effect Model (CEM)

Model ini yang paling sederhana untuk mengestimasi data panel, adalah hanya dengan mengkombinasikan/menggabungkan data *time series* dan *cross*

section. Kemudian data gabungan ini diperlakukan sebagai suatu kesatuan pengamatan tanpa melihat perbedaan antar waktu dan individu untuk mengestimasi model dengan metode OLS (*Ordinary Least Square*). Metode ini dikenal dengan estimasi *common effect*. Dalam pendekatan ini tidak memperhatikan dimensi individu maupun waktu, sehingga diasumsikan bahwa perilaku data antar individu sama dalam berbagai kurun waktu.

2. Fixed Effect Model (FEM)

Fixed Effect Model adalah model yang mengestimasi data panel dengan menggunakan variabel dummy untuk menangkap adanya perbedaan intersep. Untuk mengatasi hal tersebut, yang dilakukan dalam model data panel ini adalah dengan memasukkan dummy variabel untuk mengizinkan terjadinya perbedaan nilai parameter yang berbeda-beda baik lintas unit cross section maupun antar waktu (time-series). Pendekatan dengan memasukkan dummy variabel ini dikenal dengan sebutan model efek tetap (fixed effect) atau Least Square Dummy Variable (LSDV). Slope-nya tetap konstan/sama antar individu, tetapi intersep berbeda antar individu.

3. Random Effect Model (REM)

Dimasukkannya variabel dummy didalam model *fixed effect* bertujuan untuk mewakili ketidaktahuan kita tentang model sebenarnya. Namun, ini juga membawa konsekuensi berkurangnya derajat kebebasan (*degree of freedom*) yang pada akhirnya mengurangi efisiensi parameter. Masalah ini bisa diatasi dengan menggunakan variabel gangguan (*error term*) dikenal sebagai metode *random*

effect. Random effect mengacu pada variasi antara unit atau individu yang diamati yang berubah dari waktu ke waktu. Di dalam model ini kita akan mengestimasi data panel dimana variabel gangguan mungkin saling berhubungan antar waktu antar

Dari ketiga model yang digunakan untuk mengestimasi model regresi data panel ini, terdapat beberapa pertimbangan yang telah dibuktikan secara matematis bahwa:

- a. Jika data panel memiliki jumlah time series lebih banyak dibandingkan dengan jumlah *cross section* maka nilai taksiran parameter berbeda kecil, sehingga pilihan didasarkan pada kemudahan perhitungan, disarankan untuk menggunakan model efek tetap (*fixed effect model*).
- b. Jika data panel yang dimiliki mempunyai jumlah *time series* lebih kecil dibandingkan dengan jumlah *cross section*, maka disarankan untuk menggunakan model efek random (*random effect model*).

3.3.3 Uji Pemilihan Model Regresi Data Panel

1. Uji Chow

individu.

Uji *Chow* digunakan untuk menentukan model yang paling baik antara *Common* atau *Pooled* dan *Fixed Effect* yang akan digunakan dalam mengestimasi data panel. Uji *Chow* memiliki hipotesis dalam pengujiannya yaitu:

- 1. Ho: Common Effect Model (CEM)
- 2. H₁: Fixed Effect Model (FEM)

Penentuan model yang baik mengikuti *Chi-Square* atau F-test dengan melihat apakah probabilitasnya (p-value) lebih besar atau lebih kecil dari alpha (α). Jika p-

value > α (0,05), maka H₀ tidak ditolak sehingga model mengikuti *Common* atau *Pooled*. Apabila nilai p-value < α (0,05), maka H₀ ditolak sehingga model mengikuti *Fixed Effect*.

2. Uji Hausman

Uji Hausman sendiri merupakan pengujian statistik sebagai dasar pertimbangan memilih antara *Fixed Effect Model* atau Random *Effect Model*. Pengujian ini dilakukan dengan hipotesis sebagai berikut:

- 1. Ho: Random Effect Model (REM)
- 2. H₁: Fixed Effect Model (FEM)

Ho ditolak sehingga menggunakan FEM (*Fixed Effect Model*). Jika probabilitas dari *Correlated Random Effect* > 0.05 maka Ho tidak ditolak sehingga menggunakan REM (*Random Effect Model*).

3. Uji Lagrange Multiplier (LM)

Uji *Lagrange Multiplier Test* adalah pengujian untuk memilih apakah model yang digunakan *common effect* atau *random effect*. Pengujian ini dilakukan dengan hipotesis sebagai berikut:

- 1. Ho: Common Effect Model (CEM)
- 2. H₁: Random Effect Model (REM)

Uji LM ini didasarkan pada probability *Breusch-Pagan*, jika nilai probability Breusch-Pagan kurang dari nilai alpha maka H₀ ditolak yang berarti estimasi yang tepat untuk regresi data panel adalah model *random effect* dan sebaliknya.

3.3.4 Uji Asumsi Klasik

1. Uji Normalitas

Menurut Ghozali (2016:154), uji normalitas bertujuan untuk menguji apakah dalam model regresi, variabel pengganggu atau residual memiliki distribusi normal atau tidak. Model regresi yang baik seharusnya memiliki distribusi normal atau mendekati normal. Untuk menguji data berdistribusi normal atau tidak dapat dilakukan dengan menggunakan uji Jarque-bera (J-B). Dengan dasar pengambilan keputusan, pertama jika nilai Jarque-bera (J-B) < χ 2 tabel dan nilai probabilitas > 0,05 maka data tersebut berdistribusi secara normal. Kedua, jika nilai Jarque-bera (J-B) > χ 2 tabel dan nilai probabilitas < 0,05 maka data tersebut tidak berdistribusi secara normal.

2. Uji Multikolinearitas

Menurut Ghozali (2016:103), uji multikolinearitas bertujuan untuk menguji apakah dalam model regresi ditemukan adanya korelasi antar variabel independen. Untuk mengetahui ada atau tidaknya multikolinearitas dapat dilihat dari koefisien korelasi masing-masing variabel independen. Jika antar variabel independen terdapat korelasi yang melebihi 0,80 (> 0,80), maka terjadi multikolinearitas dan sebaliknya, jika koefisien korelasi antara masing-masing variabel bebas kurang dari 0,8 maka tidak terjadi multikolinearitas

3. Uji Heteroskedastisitas

Menurut Ghozali (2016:134), uji heteroskedastisitas digunakan untuk menguji apakah dalam model regresi terjadi ketidaksamaan varians dari residual

satu pengamatan ke pengamatan yang lain. Jika varians dari satu pengamatan kepengamatan lain tetap, maka disebut homoskedastisitas dan jika berbeda disebut heteroskedastisitas. Model regresi yang baik adalah homokedastisitas atau tidak terjadi heteroskedatisitas. Jika variabel independen signifikan secara statistik memengaruhi variabel dependen, maka ada indikasi terjadi heteroskedastisitas. Ketika nilai sig < 0,05 maka terjadi heteroskedastisitas. Sebaliknya, jika nilai sig > 0,05 maka variabel terbebas dari heteroskedastisitas.

3.3.5 Uji Hipotesis

1. Uji Signifikansi Secara Parsial (Uji-t)

Uji statistik t menunjukkan seberapa jauh pengaruh satu variabel independen secara individual dalam menerangkan variasi variabel dependen (Ghozali, 2016:97). Penelitian ini membandingkan signifikansi masing-masing variabel independen dengan taraf signifikansi $\alpha=0,05$. Apabila nilai signfikansinya lebih kecil dari 0,05 maka hipotesis diterima, yang artinya variabel tersebut berpengaruh signifikan secara parsial terhadap variabel dependen. Sebaliknya, pada tingkat signifikansi yang lebih besar dari 0,05 maka variabel tersebut memiliki pengaruh yang kecil.

Untuk melihat pengaruh tingkat pengangguran terhadap kemiskinan secara parsial digunakan hipotesis sebagai berikut:

1. H_0 : $\beta_2 \leq 0$ berarti secara parsial tingkat pengangguran terbuka tidak berpengaruh positif terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023.

2. H_a : $\beta_2 > 0$ berarti secara parsial tingkat pengangguran terbuka berpengaruh positif terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023

Untuk melihat signifikansi pengaruh variabel independen terhadap variabel dependen, tingkat kepercayaan yang digunakan adalah 95% atau taraf signifikansi 5% ($\alpha = 0.05$) dengan kriteria penilaian sebagai berikut:

- 1. Apabila $t_{hitung} \leq t_{tabel}$, dengan kata lain nilai probability > 0,05 maka H_0 tidak ditolak. Artinya tingkat pengangguran terbuka tidak mempunyai pengaruh positif signifikan terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023.
- Apabila t_{hitung} > t_{tabel}, dengan kata lain nilai *probability* < 0,05 maka H₀
 ditolak. Artinya tingkat penggangguran terbuka mempunyai pengaruh
 positif signifikan terhadap tingkat kemiskinan di Pulau Jawa tahun
 2015-2023.

Untuk melihat pengaruh upah minimum provinsi, investasi dan sanitasi terhadap kemiskinan secara parsial digunakan hipotesis sebagai berikut:

- 1. H_0 : $\beta_i \geq 0$, i=1,3,4 berarti secara parsial upah minimum provinsi, investasi dan sanitasi tidak berpengaruh negatif terhadap tingkat kemiskinan di Pulau Jawa tahun 2015- 2023.
- 2. H_a : $\beta_i < 0$, i=1,3,4 berarti secara parsial variabel upah minimum provinsi, investasi dan sanitasi berpengaruh negatif terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023.

Untuk melihat signifikansi pengaruh variabel independen terhadap variabel dependen, tingkat kepercayaan yang digunakan adalah 95% atau taraf signifikansi 5% ($\alpha = 0.05$) dengan kriteria penilaian sebagai berikut:

- 1. Apabila $t_{hitung} \geq t_{tabel}$, dengan kata lain nilai probability > 0,05 maka H_0 tidak ditolak. Artinya upah minimum provinsi, investasi dan sanitasi tidak mempunyai pengaruh negatif signifikan terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023.
- 2. Apabila $t_{hitung} < t_{tabel}$, dengan kata lain nilai probability < 0,05 maka H_0 ditolak. Artinya upah minimum provinsi, investasi dan sanitasi mempunyai pengaruh negatif signifikan terhadap tingkat kemiskinan tahun 2015-2023.

2. Uji Signifikansi Secara Simultan (Uji-F)

Uji statistik F dilakukan untuk mengetahui apakah semua variabel independen yang terdapat dalam model memiliki pengaruh secara bersama-sama terhadap variabel dependen. Untuk mengetahui hal tersebut dapat dilihat dari nilai probabilitas signifikansinya. Apabila nilai signifikansinya lebih kecil dari 0,05 maka hipotesis diterima, yang artinya variabel tersebut berpengaruh secara signifikan secara bersama-sama terhadap variabel dependen. Sebaliknya, pada tingkat signifikansi yang lebih besar dari 0,05 maka variabel tersebut memiliki pengaruh yang kecil. Statistik uji yang digunakan dalam Uji F:

1. H_0 : $\beta i = 0$, i = 1, 2, 3, 4 berarti secara bersama-sama atau simultan variabel upah minimum provinsi, tingkat pengangguran terbuka, investasi dan

- sanitasi berpengaruh tidak signifikan terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023.
- 2. H_a : $\beta i \neq 0$, i=1,2,3,4 secara bersama-sama atau simultan variabel upah minimum provinsi, tingkat pengangguran terbuka, investasi, dan sanitasi berpengaruh signifikan terhadap tingkat kemiskinan di Pulau Jawa tahun 2015-2023.

Untuk melihat signifikansi pengaruh variabel independen terhadap variabel dependen, tingkat kepercayaan yang digunakan adalah 95% atau taraf signifikansi 5% ($\alpha = 0.05$) dengan kriteria penilaian sebagai berikut:

- 1. Apabila $t_{hitung} < t_{tabel}$, dengan kata lain probability > 0.05 maka H_0 tidak ditolak. Artinya variabel upah minimum provinsi, tingkat pengangguran terbuka, investasi dan sanitasi tidak mempunyai pengaruh signifikan terhadap variabel dependen
- 2. Apabila $t_{hitung} > t_{tabel}$, dengan kata lain probability < 0,05 maka H_0 ditolak. Artinya variabel upah minimum provinsi, tingkat pengangguran terbuka, investasi dan sanitasi mempunyai pengaruh signifikan terhadap variabel dependen

3.3.6 Koefisien Determinasi (R²)

Menurut Ghozali (2016:95) koefisien determinasi (R²) merupakan kemampuan untuk mengukur suatu model dalam menafsirkan variabel dependen. Nilai koefisien determinasi yaitu antara nol dan satu. Nilai R² yang kecil artinya kemampuan variabel independen dalam menjelaskan variasi variabel dependen

amat terbatas. Koefisien determinasi memiliki kelemahan yang mendasar yaitu adanya biasterhadap jumlah variabel independen yang dimasukan kedalam model. Penggunaan nilai R-squared dibutuhkan karena setiap tambahan satu variabel independen akan meningkatkan koefisien determinasi (R²), meskipun variabel tersebut tidak signifikan dapat diartikan jika mendekati nilai 1 maka variabel independen dapat memberikan informasi yang diinginkan dalam memprediksi variabel dependen. Tetapi, jika nilai mendekati 0 maka variabel independen tidak dapat memberikan informasi yang diinginkan dalam memprediksi variabel independen.