### **BAB 1**

#### **PENDAHULUAN**

#### 1.1 Latar Belakang Masalah

Pesatnya perkembangan zaman di abad ke-21 telah membawa kita pada era Revolusi 4.0 yang ditandai dengan masifnya pemanfaatan internet. Dewasa ini berbagai sektor kehidupan seperti halnya ekonomi, sosial, politik, kesehatan, bahkan pendidikan sudah terintegrasi ke dalam perangkat digital sehingga segala macam informasi dapat dengan mudah diakses dan dibagikan lewat sentuhan jari (Kamil et al., 2021; Khasanah & Herina, 2019). Hal tersebut berimplikasi pada munculnya kebutuhan sumber daya manusia berkualitas dan dapat bersaing secara global. Prayogi (2019) menuturkan bahwa untuk menghadapi realitas abad 21, pembelajaran di kelas perlu ditunjang dengan mengasah empat keterampilan dasar yang penting dimiliki oleh peserta didik. Keterampilan ini dikenal dengan istilah 4C, yaitu communication (berkomunikasi), collaboration (berkolaborasi), creative thinking and innovation (berpikir kreatif dan inovasi), serta critical thinking and problem solving (berpikir kritis dan kemampuan pemecahan masalah). Berkaitan dengan kemampuan pemecahan masalah, Ansori (2020) beserta Grover (dalam Zahid, 2020) menambahkan bahwa terdapat satu keterampilan yang layak diasosiasikan sebagai C kelima, yaitu computational thinking atau kemampuan berpikir komputasi.

Computational thinking (CT) merupakan kemampuan berpikir yang dipopulerkan oleh Wing pada tahun 2006 dengan menerapkan prinsip-prinsip ilmu komputer dalam menyelesaikan permasalahan (Kamil et al., 2021). Dalam hal ini CT bukan berarti mendesain manusia untuk menjadi sebuah komputer, melainkan mendorong manusia untuk berpikir sebagaimana ahli komputer akan memandang dan menyelesaikan masalah. Seseorang yang menerapkan CT akan mampu memahami, menelaah, serta mencerna suatu permasalahan yang sedang dihadapinya (Marom et al., 2022). Hal ini menunjukkan bahwa CT berfokus pada pembentukan kerangka berpikir manusia dalam menyelesaikan masalah dengan mencari solusi yang paling efektif dan efisien berdasarkan informasi dan pengetahuan yang telah dimiliki sebelumnya (Sa'diyyah et al., 2021). Sejalan dengan pendapat tersebut Puspitasari (2023)

menambahkan bahwa solusi yang diperoleh selanjutnya direpresentasikan oleh agen pemroses informasi, baik secara manual oleh manusia maupun secara digital dengan bantuan komputer. Dengan demikian, dapat disimpulkan bahwa CT merupakan kemampuan berpikir solutif dan sistematis melalui penerapan prinsip-prinsip ilmu komputer dalam menghadapi permasalahan. Berdasarkan hal tersebut para ahli kemudian membuat beberapa rumusan indikator untuk mengukur kemampuan CT, namun setidaknya terdapat empat indikator utama yang menjadi komponen dasar CT, antara lain decomposition (dekomposisi) yaitu kemampuan mengurai masalah menjadi beberapa bagian kecil, abstraction (abstraksi) yaitu kemampuan menentukan fokus permasalahan dengan mengabaikan detail-detail yang tidak relevan, pattern recognition (pengenalan pola) yaitu kemampuan mengenali keteraturan pola yang muncul pada permasalahan yang dihadapi ataupun masalah serupa, dan algorithm (algoritma) yaitu kemampuan menyusun strategi serta langkah-langkah penyelesaian masalah secara runut.

Beberapa riset terkait kemampuan CT peserta didik di Indonesia saat ini masih berada pada kategori rendah. Seperti yang ditemukan oleh Kamil et al. (2021) dalam penelitiannya bahwa 48% kemampuan CT peserta didik masih berada pada kategori rendah, 36% pada kategori tinggi, dan 16% pada kategori sedang. Selain itu nilai ratarata yang diperoleh adalah 33,25 dengan nilai maksimum sebesar 68,75. Dengan hasil demikian, dapat disimpulkan bahwa secara keseluruhan kemampuan CT peserta didik masih kurang optimal karena diketahui bahwa peserta didik belum mampu menuliskan informasi-informasi yang dibutuhkan, tidak dapat menyebutkan langkah-langkah penyelesaian, serta solusi yang diperoleh masih berupa solusi yang kurang tepat (Kamil et al., 2021). Menanggapi isu tersebut, Sa'diyyah et al (2021) mengembangkan sebuah instrumen tes yang bertujuan untuk mengukur kemampuan CT peserta didik. Berdasarkan hasil uji coba produk, indikator kemampuan CT yang paling sulit dikuasai peserta didik adalah indikator pattern recognition (pengenalan pola) dan abstraction (abstraksi). Hal ini dikarenakan untuk mengenali sebuah pola dalam permasalahan, peserta didik harus memastikan *input* yang benar untuk menghasilkan *output* yang sesuai sehingga diperlukan daya nalar yang tinggi dan berpikir kreatif. Selanjutnya ketika pola tersebut ditemukan, maka kemampuan abstraksi diperlukan untuk menyaring informasi mana saja yang sesuai dengan tujuan awal pemecahan masalah. Ketidakmampuan peserta didik dalam menguasai indikator *abstraction* (abstraksi) dapat mengaburkan informasi-informasi penting sehingga solusi yang didapat menjadi tidak relevan.

Berkaitan dengan hal tersebut, peneliti juga melakukan penelitian pendahuluan di SMP Al Huda Turalak untuk melihat profil kemampuan CT peserta didik dengan menggunakan soal *Bebras Challenge*, sebuah tes yang dirancang khusus untuk mengukur kemampuan CT dan di klaim dapat diselesaikan tanpa harus memahami konsep-konsep informatika terlebih dahulu. Dalam riset ini, peserta didik diberikan tiga buah soal kontekstual yang masing-masing memuat dua indikator kemampuan CT. Hasil menunjukkan bahwa dari 26 peserta didik, kemampuan CT baru dikuasai oleh 43% peserta didik saja sehingga mengindikasikan adanya masalah. Melalui hasil observasi dan analisis, ditemukan bahwa peserta didik kurang menguasai indikator *abstraction* (abstraksi) dan *algorithm* (algoritma) yang dibuktikan dengan kesalahan berpikir dalam menyusun langkah penyelesaian masalah.

#### 3. Empat Pekerjaan

Rara si berang-berang harus melakukan 4 tugas berikut ini selama jam istirahat (Pukul 12:00 – 13:00), yaitu:

- Membeli sebuah buku di toko buku;
- Membeli sebotol susu dan roti di toko makanan:
- Mengirim sebuah buku ke kantor pos;
- Minum secangkir kopi di kafetaria.

Ia memperkirakan waktu untuk menyelesaikan setiap tugas tersebut. Perkiraan ini hanya dapat berlaku di luar jam sibuk masing-maing toko/tempat.

| Tempat       | Durasi<br>Waktu | Jam sibuk<br>toko/tempat |  |
|--------------|-----------------|--------------------------|--|
| Toko buku    | 15 menit        | 12.40 - 13.00            |  |
| Toko makanan | 10 menit        | 12.00 - 12.40            |  |
| Kantor pos   | 15 menit        | 12.00 - 12.30            |  |
| Kafetaria    | 20 menit        | 12.30 - 12.50            |  |

#### Tantangan

Bantulah si Rara untuk mengurutkan tugas dari yang paling awal hingga paling akhir dikerjakan agar ia dapat menghindari waktu sibuk semua toko/tempat dan tidak melebihi waktu istirahatnya!

Gambar 1.1 Soal Bebras Siaga (I-2016-09-SK-01)

Soal di atas merupakan soal *Bebras Challenge* tahun 2016 dari kategori Siaga yang mengukur indikator *abstraction* dan *algorithm*. Dalam soal ini, peserta didik diberikan informasi jam rawan sibuk pada setiap tempat beserta durasi maksimum waktu kunjungan yang direncanakan, kemudian peserta didik diminta untuk menyusun rencana kunjungan dengan ketentuan yakni mampu menghindari jam rawan sibuk di setiap tempat sehingga dapat memaksimalkan alokasi waktu yang tersedia. Keterampilan

abstraction akan terlihat ketika peserta didik mampu memahami mana informasi yang penting dan yang tidak berdasarkan rentang jam sibuk dan prediksi waktu luang pada masing-masing tempat. Setelah peserta didik mampu melakukan abstraction terhadap informasi yang kurang relevan, maka selanjutnya informasi tersebut dijadikan sebagai acuan dasar dalam menyusun rencana kunjungan. Saat peserta didik mampu menjawab dengan benar sampai ke tahap ini, maka ia layak dinyatakan mampu menguasai keterampilan algorithm.

| tempat                  | Durasi wantu                              | Jam sibuk     | T       |
|-------------------------|-------------------------------------------|---------------|---------|
| toko buku               | ic menit                                  | 12.90 -1240   |         |
|                         |                                           |               | 12.0010 |
| Lafetaria<br>Lantor Pos | 20 th menif                               | 12.30-12.60   | 20      |
|                         | er en |               | 12.30   |
| toko buhu               | It menit                                  | 12.40-13.00   | 15      |
|                         |                                           |               | 12.45   |
| Tour resolvanan         | -Za menit                                 | 12.30 - 12.50 | 250     |

Gambar 1.2 Contoh kesalahan peserta didik pada indikator abstraction dan algorithm

Gambar di atas menunjukkan hasil pekerjaan siswa S-19 yang melakukan kesalahan *abstraction* saat menentukan rentang waktu jam sibuk yang menjadi dasar penyusunan rencana kunjungan. Secara konsep S-19 sudah mampu memahami konteks pertanyaan namun akibat salah menentukan titik fokus permasalahan, strategi yang sudah disusun pun akhirnya menjadi kurang tepat. Dengan begitu, S-19 juga mengalami kesalahan *algorithm*. Hal ini sejalan dengan penelitian Kamil (2021) yang menemukan bahwa ketika peserta didik salah mengumpulkan informasi, maka susunan alur penyelesaian masalah menjadi keliru dan jawaban yang dihasilkan pun tidak tepat. Peserta didik dalam hal ini sudah bisa mengenali pola yang muncul pada masalah namun mereka masih belum bisa menentukan informasi mana yang relevan sehingga perencanaan solusi pun menjadi kurang tepat. Temuan ini sejalan dengan hasil wawancara dengan guru matematika yang mengungkapkan bahwa peserta didik selama ini terbiasa hanya menggunakan rumus matematis tanpa betul-betul mengerti syarat penggunaannya, sehingga seringkali mengalami kesulitan ketika diberikan soal modifikasi.

Berkaca dari fenomena terkait penguasaan kemampuan CT di Indonesia, Kementerian Pendidikan dan Kebudayaan (KEMDIKBUD) akhirnya menetapkan CT sebagai kompetensi baru dalam sistem pembelajaran (Budiansyah, 2020). Hal tersebut juga diperkuat oleh adanya perubahan *framework* PISA 2021 yang memasukkan CT ke dalam asesmen. Oleh karena itu pembelajaran berbasis CT menjadi suatu kebutuhan baru di abad 21. Sebagai kompetensi baru, upaya penerapan CT dapat kita lihat secara eksplisit pada kurikulum merdeka melalui mata pelajaran Informatika yang menjadi mata pelajaran wajib di jenjang SMP dan SMA. Berkaitan dengan hal tersebut, karena CT merupakan kemampuan berpikir yang perlu dilatih secara terus-menurus maka penerapan CT juga dihimbau untuk diintegrasikan secara implisit ke dalam mata pelajaran lainnya, salah satunya yaitu pembelajaran matematika (Barr & Stephenson, 2011; Natali, 2022).

Matematika dan ilmu komputer memiliki kesamaan epistemik yang ditandai dengan banyaknya penerapan prinsip-prinsip matematika dalam pengembangan ilmu komputer seperti halnya algoritma, struktur data, dan pemrograman. Zahid (2020) menuturkan bahwa kondisi ini merupakan peluang yang baik untuk mengenalkan kemampuan CT pada peserta didik secara komprehensif karena mata pelajaran matematika merupakan pelajaran wajib di hampir seluruh jenjang pendidikan. Integrasi antara CT dan matematika akan mengarahkan peserta didik agar mampu menyusun strategi pemetaan masalah melalui berpikir terstruktur, kreatif, dan logis (Azmi & Ummah, 2021; Ni'am et al., 2022). Hal ini menjadikan penerapan CT juga berimplikasi terhadap proses pembelajaran yang lebih bermakna sehingga berdampak positif terhadap penguasaan serta pemahaman konten matematika.

Mengingat akan pentingnya kemampuan CT bagi peserta didik, maka diperlukan adanya pengembangan terhadap perangkat pembelajaran yang dapat membangun kemampuan CT. Hal ini penting dilakukan karena rendahnya kemampuan CT dipengaruhi salah satunya oleh aspek penunjang kegiatan belajar mengajar yang belum sesuai dengan kebutuhan peserta didik, seperti halnya media pembelajaran, metode pembelajaran, ataupun bahan ajar (Nuursya'baani *et al.*, 2022). Berdasarkan hal tersebut, maka salah satu upaya yang dapat dilakukan seorang guru untuk melatih kemampuan CT di kelas adalah dengan mengembangkan bahan ajar yang mengintegrasikan komponen-komponen CT.

Lembar Kerja Peserta Didik (LKPD) merupakan salah satu bahan ajar cetak berbentuk lembar tugas yang berisi serangkaian aktivitas belajar dan berorientasi pada peserta didik. Aktivitas belajar pada LKPD disajikan melalui petunjuk pengerjaan tugas, ringkasan materi, dan latihan soal sebagai evaluasi. Sejalan dengan hal tersebut Ahsan et al., (2019) menambahkan bahwa penggunaan LKPD dapat melatih peserta didik dalam proses pemecahan masalah. Pernyataan ini terbukti secara empiris melalui hasil-hasil riset yang menunjukkan bahwa penggunaan LKPD dapat meningkatkan berbagai kemampuan matematis peserta didik. Riset mengenai efektivitas penggunaan LKPD pernah dilakukan oleh Fitriyani, et al. (2023) yang mengembangkan LKPD berbasis realistic mathematics education untuk memfasilitasi kemampuan pemahaman matematis pada materi perbandingan di kelas VII SMP. Selain itu, Suanto, et al. (2022) telah berhasil meningkatkan kemampuan berpikir kritis melalui LKPD berbasis konteks budaya Melayu. Sedangkan Septian et al., (2019) juga berhasil meningkatkan prestasi belajar peserta didik melalui pengembangan LKPD berbasis realistic mathematics education. Melihat hasil yang positif dari beberapa penelitian tersebut, dapat disimpulkan bahwa LKPD dapat menjadi salah satu bahan ajar yang potensial dalam mengembangkan kemampuan peserta didik di berbagai bidang, termasuk salah satunya kemampuan CT. Penggunaan LKPD yang bersifat student center selaras dengan tujuan utama CT yang menekankan aspek pembentukan mental peserta didik agar mampu berpikir terstruktur, kreatif dan logis (Azmi & Ummah, 2021). Berkaitan dengan hal tersebut, maka kebaruan dari penelitian ini yaitu hendak menjadikan LKPD sebagai media untuk mengintegrasikan CT dalam menjelaskan konsep-konsep matematis.

Adapun domain matematika yang dikembangkan bersama penerapan CT dalam penelitian ini adalah domain bilangan khususnya pada materi rasio kelas VII Kurikulum Merdeka yang meliputi proposisi, skala, dan laju perubahan satuan. Pengambilan materi ini didasarkan pada trend penelitian yang menjadikan domain bilangan sebagai langkah awal yang pas untuk mengenalkan konsep CT (Hickmott *et al.*, 2018). Berdasarkan uraian tersebut, maka penelitian ini akan fokus pada pengembangan LKPD yang mengintegrasikan CT dalam mengajarkan materi rasio dengan judul, "Pengembangan Lembar Kerja Peserta Didik (LKPD) Berbasis *Computational Thinking* pada Materi Rasio di Jenjang SMP".

#### 1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dikemukakan, maka rumusan masalah dalam penelitian ini antara lain.

- (1) Bagaimana prosedur pengembangan lembar kerja peserta didik (LKPD) berbasis *computational thinking* pada materi rasio di jenjang SMP?
- (2) Bagaimana peningkatan hasil belajar peserta didik terkait materi rasio setelah menggunakan lembar kerja peserta didik (LKPD) yang dikembangkan?
- (3) Bagaimana kemampuan *computational thinking* peserta didik setelah menggunakan lembar kerja peserta didik (LKPD) yang dikembangkan?

## 1.3 Tujuan Pengembangan

Berdasarkan rumusan masalah yang telah dikemukakan, maka tujuan pengembangan dalam penelitian ini adalah sebagai berikut.

- (1) Membahas secara komprehensif mengenai prosedur lembar kerja peserta didik (LKPD) berbasis *computational thinking* pada materi rasio di jenjang SMP.
- (2) Menganalisis dan mendeskripsikan peningkatan hasil belajar peserta didik terkait materi rasio setelah menggunakan lembar kerja peserta didik (LKPD) yang dikembangkan.
- (3) Menganalisis dan mendeskripsikan kemampuan *computational thinking* peserta didik setelah menggunakan lembar kerja peserta didik (LKPD) yang dikembangkan.

## 1.4 Spesifikasi Produk yang Diharapkan

Spesifikasi produk yang diharapkan dalam penelitian dan pengembangan ini adalah sebagai berikut:

- (1) Lembar kerja peserta didik (LKPD) berbentuk media cetak yang dibuat menggunakan aplikasi desain grafis berbasis web yaitu *Canva Education*.
- (2) Penyusunan lembar kerja peserta didik (LKPD) dibuat dengan memperhatikan indikator kemampuan *computational thinking* sehingga diharapkan peserta didik

- dapat terbiasa menyelesaikan persoalan matematis dengan lebih efektif, efisien, dan optimal.
- (3) Lembar kerja peserta didik (LKPD) dibuat untuk pembelajaran materi rasio di jenjang SMP yang mengacu pada Kurikulum Merdeka. Sub topik yang dimuat dalam lembar kerja peserta didik (LKPD) antara lain proposisi, skala, dan laju perubahan satuan.
- (4) Soal-soal materi rasio dalam lembar kerja peserta didik (LKPD) dikembangkan dengan memperhatikan indikator kemampuan *computational thinking* untuk melatih kemampuan berpikir peserta didik.

## 1.5 Pentingnya Pengembangan

Pentingnya pengembangan lembar kerja peserta didik (LKPD) berbasis *computational thinking* dalam penelitian ini adalah sebagai berikut.

- (1) Bagi peserta didik, sebagai alternatif bahan ajar yang membantu peserta didik untuk melatih kemampuan *computational thinking* serta menunjang pemahaman materi rasio secara mandiri.
- (2) Bagi guru, sebagai alternatif bahan ajar yang membantu guru untuk melatih kemampuan *computational thinking* peserta didik dalam pembelajaran rasio.
- (3) Bagi sekolah, sebagai referensi untuk mengintegrasikan kemampuan *computational thinking* pada mata pelajaran lainnya sehingga dapat meningkatkan mutu pendidikan.
- (4) Bagi peneliti selanjutnya, memberikan inspirasi untuk melaksanakan penelitian lebih lanjut terkait *computational thinking* dalam bidang pendidikan matematika.

### 1.6 Asumsi dan Keterbatasan Pengembangan

### 1.6.1 Asumsi Pengembangan

Asumsi pengembangan merupakan dugaan awal yang menjadi dasar pemikiran peneliti dalam melakukan penelitian pengembangan. Asumsi pengembangan pada penelitian ini antara lain.

- (1) Melatih kemampuan *computational thinking* agar peserta didik lebih cakap dan siap dalam menyelesaikan suatu persoalan matematis.
- (2) Lembar kerja peserta didik (LKPD) yang dikembangkan dapat membantu peserta didik untuk membangun pembiasaan diri agar mampu berpikir secara komputasional sehingga dapat menunjang pemahaman materi rasio di jenjang SMP.
- (3) Penerapan indikator *computational thinking* dalam lembar kerja peserta didik (LKPD) dapat dijadikan sebagai pedoman bagi guru dalam melaksanakan pembelajaran matematika yang lebih bermakna di kelas.

## 1.6.2 Keterbatasan Pengembangan

Pengembangan lembar kerja peserta didik (LKPD) dalam penelitian ini memiliki beberapa keterbatasan, antara lain.

- (1) Materi yang dimuat dalam lembar kerja peserta didik (LKPD) hanya membahas materi rasio di jenjang SMP yang mencakup proposisi, skala, dan laju perubahan satuan.
- (2) Pengembangan lembar kerja peserta didik (LKPD) ini hanya dibuat untuk mengeksplorasi kemampuan *computational thinking* pada ranah pendidikan matematika khususnya pada materi rasio di jenjang SMP.
- (3) Uji coba produk hanya dilakukan pada siswa SMP Al Huda Turalak.

#### 1.7 Definisi Operasional

#### 1.7.1 LKPD

LKPD dalam penelitian ini merupakan bahan ajar cetak berupa lembaran tugas yang berisi petunjuk kerja, ringkasan materi, dan latihan soal yang bertujuan agar peserta didik mampu menemukan dan memahami konsep rasio pada Kurikulum Merdeka yang mencakup proposisi, skala, dan laju perubahan.

# 1.7.2 Computational Thinking

Computational thinking dalam penelitian ini yaitu kemampuan berpikir untuk menyelesaikan masalah yang dilihat berdasarkan empat indikator utama yaitu decomposition, abstraction, pattern recognition, dan algorithm.

# 1.7.3 LKPD Berbasis Computational Thinking

LKPD berbasis *computational thinking* dalam penelitian ini yaitu LKPD yang menyajikan pengalaman belajar *unplugged* (mengenalkan konsep *computational thinking* tanpa melibatkan bantuan komputer) dan menerapkan beberapa taksonomi *computational thinking* Weintrop yang disesuaikan dengan kebutuhan penyampaian materi rasio.