2 LANDASAN TEORI

2.1 Manajemen Konstruksi

Manajemen proyek adalah kegiatan merencanakan, mengorganisasikan, memimpin, dan mengawasi sumber daya perusahaan untuk mencapai tujuan jangka pendek (Soeharto, 1999). Pengertian lain dari manajemen proyek diantaranya manajemen proyek adalah suatu cara atau sistem untuk mengelola berbagai tugas perusahaan selama waktu tertentu. Untuk mencapai tujuan tersebut, banyak parameter yang harus dilakukan, termasuk manajemen anggaran, sumber daya, tim proyek, dan operasional kerja (Aziz et al., 2022).

Menurut syarif (2011) dalam (Syaputra, 2019) menjelaskan bahwa manajemen konstruksi mempunyai beberapa fungsi diantaranya:

- 1. Menjaga *quality control* dalam menjaga kesesuaian antara perencanaan dan pelaksanaan.
- 2. Mengantisipasi perubahan kondisi lapangan yang dapat berubah-ubah dan mengatasi kendala keterbatasan waktu pelaksanaan.
- 3. Memantau kemajuan proyek yang telah dicapai dengan laporan harian, mingguan dan bulanan.
- 4. Hasil evaluasi dapat dijadikan tindakan pengambilan keputusan pada masalah-masalah dilapangan.
- 5. Menjadi sistem informasi yang baik dalam menganalisis performa dilapangan.

2.2 Biaya Proyek Konstruksi

Biaya yang harus dikeluarkan untuk membangun sesuatu, seperti rumah atau gedung, disebut biaya konstruksi. Biaya ini sangat penting dalam proyek konstruksi, seperti yang ditekankan oleh Soeharto (1995). Kita harus hati-hati mengatur pengeluaran agar tidak melebihi anggaran yang sudah ditentukan. Menurut para ahli dari *American Association of Cost Engineering* (AACE) (1992), biaya konstruksi terdiri dari dua bagian utama. Pertama, biaya yang langsung

berhubungan dengan pembangunan, seperti membeli bahan bangunan. Kedua, biaya yang tidak langsung, seperti biaya sewa alat atau gaji pengawas.

2.2.1 Biaya Langsung

Biaya langsung adalah semua biaya yang secara langsung terkait dengan aktivitas pembangunan di lapangan (Hartanto, 2021). Beberapa komponen utama dari biaya langsung ini meliputi:

- 1. Biaya bahan: Meliputi seluruh pengeluaran untuk material yang digunakan dalam proyek, mulai dari pembelian hingga pengiriman, termasuk pajak dan biaya tambahan lainnya. Perhitungan biaya ini umumnya didasarkan pada analisis harga satuan material.
- 2. Upah tenaga kerja: Biaya yang dikeluarkan untuk membayar pekerja yang terlibat dalam proyek. Besaran upah biasanya ditentukan berdasarkan satuan pekerjaan tertentu dan mengacu pada standar upah yang berlaku.
- 3. Biaya peralatan: Cakupan biaya ini meliputi sewa, pembelian, perawatan, dan operasional peralatan konstruksi. Faktor-faktor seperti biaya transportasi peralatan, upah operator, serta biaya depresiasi juga perlu dipertimbangkan.

Estimasi biaya langsung dalam proyek konstruksi dapat dilakukan dengan menghitung volume pekerjaan yang direncanakan dan mengalikannya dengan harga satuan pekerjaan yang berlaku.

2.2.2 Biaya Tidak Langsung

Selain biaya langsung yang terkait langsung dengan pembangunan fisik suatu proyek, terdapat pula biaya-biaya tambahan yang tidak secara langsung berhubungan dengan konstruksi namun tetap menjadi komponen penting dalam keseluruhan biaya proyek. Biaya-biaya ini sering disebut sebagai biaya tidak langsung, biaya tidak langsung diantaranya adalah:

1. Biaya Overhead

Menurut Cilensek (1991) dalam (Hartanto, 2021), mendefinisikan bahwa biaya *overhead* sebagai berbagai pengeluaran yang mendukung kelancaran proyek secara keseluruhan, namun tidak dapat dibebankan

secara langsung pada suatu item pekerjaan spesifik. Biaya *overhead* secara umum dapat dikelompokkan menjadi dua kategori utama:

a. Overhead Kantor

Overhead Kantor merupakan alokasi beban dari kantor pusat kepada proyek. Dimana biaya overhead kantor pusat adalah biaya-biaya yang tak langsung terlibat pada proyek konstruksi yang terdapat pada kantor pusat, yang dibebankan ke tiap proyek dengan suatu tingkat pembebanan tertentu (Taylor, 1994), misalnya:

- 1) upah staf/pegawai kantor;
- 2) biaya perlengkapan kantor;
- 3) listrik;
- 4) dan komunikasi (telepon, fax);
- 5) sewa kantor dan fasilitasnya;
- 6) ijin-ijin usaha;
- 7) biaya tender;
- 8) referensi bank;
- 9) anggota assosiasi.

b. Overhead proyek (dilapangan)

Overhead proyek merupakan biaya yang timbul langsung di lokasi proyek namun tidak dapat dibebankan pada suatu item pekerjaan tertentu, diantaranya adalah:

- 1) Biaya personil di lapangan;
- 2) Fasilitas sementara proyek seperti biaya untuk pembuatan gudang, kantor, penerangan, komunikasi (telpon), transportasi;
- 3) Peralatan kecil yang umumnya habis / terbuang setelah proyek selesai;
- 4) Foto-foto dan gambar jadi (asbuilt drawing);
- 5) Rapat-rapat di lapangan;
- 6) Biaya-biaya pengukuran, dan lain lain.

Menurut Minkarah & Ahmad (1998) dan Hesami & Lavasani (2014), dalam (Hartanto, 2021) Sejumlah variabel dapat memengaruhi besarnya biaya *overhead* suatu proyek. Dari sisi teknis, kompleksitas desain, metode

konstruksi, dan durasi proyek sangat berpengaruh. Faktor lingkungan seperti lokasi, kondisi ekonomi, dan regulasi juga turut berperan. Selain itu, faktor bisnis seperti persaingan, keuangan kontraktor, dan jenis kontrak turut memengaruhi biaya.

Lalu, Menurut (Hartanto, 2021), Faktor utama yang paling mempengaruhi biaya *overhead* proyek adalah:

- a) Banyaknya/jumlah proyek konstruksi yang tersedia apabila proyek konstruksi yang ditender pada saat itu sedikit, maka rekanan/ kontraktor akan berusaha menurunkan biaya overhead sampai batas minimal.
- Kompleksitas proyek dengan semakin mudah tingkat kesulitan proyek biaya overhead pun semakin kecil.
- c) Pengalaman dalam mengerjakan proyek sejenis apabila kontraktor telah berpengalaman dalam mengerjakan proyek sejenis, maka kontraktor tersebut semakin tahu strategi dalam, melaksanakan proyek tersebut, hal ini akan berpengaruh terhadap biaya overhead.
- d) Jumlah kontraktor yang berminat apabila kompetitor atau pesaing dalam tender banyak, maka rekanan akan berlomba-lomba untuk mendapatkan proyek dengan menurunkan harga tawaran yang salah satunya dengan menurunkan nilai overhead.
- e) Beban pelaksanaan pekerjaan saat ini (jumlah proyek yang sedang dikerjakan)
 jika pada saat tender dilakukan dan rekanan belum memiliki pekerjaan yang sedang dilakukan maka, kontraktor akan berusaha agar bisa memperoleh pekerjaan atau proyek tersebut.
- f) Kebutuhan kontraktor terhadap pekerjaan/proyek
 Setiap kontraktor pasti butuh terhadap pekerjaan/proyek karena
 dengan adanya pekerjaan maka kelangsungan perusahaan akan tetap
 berjalan.

g) Tingkat kesulitan di lokasi (site layout)

Tingkat kesulitan dilapangan akan berdampak dengan munculnya biaya-biaya tak terduga, sehingga akan berpengauh terhadap biaya overhead.

h) Lokasi proyek

Lokasi Proyek atau lokasi pekerjaan akan sangat mempengaruhi biaya pelaksanaan termasuk biaya *overhead*, karena tingkat kesulitan dalam pelaksanan pekerjaan salah satunya adalah lokasi dimana kita berkerja.

i) Lingkungan sekitar atau daerah proyek

Lingkungan proyek sangat berdampak dalam kelancaran pelaksanaan proyek, terutama akses dan dukungan masyarakat sekitar, hal ini yang mempengaruhi biaya tak terduga.

j) Kedaan ekonomi di daerah lokasi proyek

Kondisi ekonomi didaerah lokasi pekerjaan akan berpengaruh terhadap biaya tak terduga.

k) Ketersediaan kas/keuangan kontraktor

Dengan tersedianya kas/keuangan perusahaan akan mudah untuk memulai pekerjaan tanpa harus menunggu uang muka terebih dahulu, sehingga dalam pengadaan material dan lain lain lebih mudah, hal ini akan menekan biaya tak terduga dan biaya *overhead*.

2. Biaya Tak Terduga/contigencies

Biaya tak terduga adalah alokasi dana untuk menghadapi berbagai kemungkinan yang tidak dapat diprediksi selama proyek berlangsung. Mulai dari perubahan kondisi tanah yang tak terduga, seperti naiknya muka air tanah atau longsor, hingga kesalahan perhitungan dalam pelaksanaan. Menentukan besaran biaya ini cukup menantang karena sifatnya yang sangat fluktuatif. Umumnya, alokasi dana *contingencies* berkisar antara 0,5% hingga 5% dari total biaya proyek.

3. Keuntungan / profit

Keuntungan merupakan daya tarik utama dalam bisnis kontraktor. Ini adalah kompensasi yang wajar atas risiko, keahlian, dan usaha yang telah

dikeluarkan. Keuntungan berbeda dengan gaji karena keuntungan bersifat fluktuatif dan dipengaruhi oleh berbagai faktor, termasuk tingkat persaingan. Biaya-biaya proyek umumnya bersifat tetap dan sulit untuk dikurangi secara signifikan. Akibatnya, keuntungan menjadi satu-satunya komponen yang dapat disesuaikan untuk memenangkan tender. Dalam upaya untuk mendapatkan proyek, kontraktor seringkali bersedia mengorbankan sebagian keuntungan demi mendapatkan kontrak.

2.3 Penjadwalan Proyek

Penjadwalan proyek adalah penentuan jumlah waktu yang tersedia untuk menyelesaikan setiap tugas dalam rangka menyelesaikan proyek dengan cara yang paling efisien sambil mempertimbangkan keterbatasan dilapangan. Penjadwalan dilakukan setelah berbagai masalah muncul dalam proyek. Selalu ada proses *monitoring* dan *updating* untuk mendapatkan penjadwalan yang paling realistis agar alokasi sumber daya dan penentapan durasi sesuai dengan sasaran dan tujuan proyek (Azizah, 2017).

Menurut (Azizah, 2017) penjadwalan proyek mempunyai tujuan diantaranya:

- 1. Mempermudah perumusan masalah proyek.
- 2. Menentukan metode yang sesuai.
- 3. Kegiatan lebih lancar dan terorganisir.
- 4. Mendapat hasil yang optimum.

Penjadwalan mempunyai manfaat diantaranya:

- 1. Mengetahui hubungan antar kegiatan.
- 2. Mengetahui kegiatan pada waktu/jalur kritis.
- 3. Mengetahui mulai dan selesainya suatu kegiatan.

2.4 Work Breakdown Structure (WBS)

Work Breakdown Structure (WBS) adalah pemecahan pekerjaan besar menjadi pekerjaan-pekerjaan yang lebih kecil dengan tujuan untuk mempermudah penjadwalan proyek dan estimasi ongkos serta penentuan yang penanggung jawab (Fazis, 2022). WBS adalah pemecahan kegiatan dari total scope of work yang

dilakukan oleh tim proyek untuk mencapai tujuan proyek dan membuat kebutuhan pekerjaan menjadi mungkin untuk dilakukan (Project Management Institute, 2021).

Setiap penurunan level dari pemecahan WBS menggambarkan peningkatan detail pada pekerjaan proyek. Tingkat terendah dari aktivitas pada WBS disebut work package. Work package berguna untuk mengelompokan aktivitas dimana pekerjaan dijadwalkan dan diperkirakan, dikontrol, dan diawasi. Pembuatan WBS diselesaikan dengan memberikan akun kontrol pada setiap work package. Setiap akun kontrol memiliki akses pada informasi biaya, jadwal, dan sumber daya untuk work package-nya, akun kontrol juga dapat menambahkan satu atau lebih pekerjaan atau biasa disebut planning package pada work package. Planning package adalah bagian dari WBS dibawah akun kontrol yang diketahui pekerjaannya, namun tidak memiliki jadwal pekerjaan yang rinci(Project Management Institute, 2013).

Menurut (Fazis, 2022) terdapat 3 manfaat utama dari WBS, yaitu:

- Selama analisis WBS, manajer fungsional dan personal lainnya terlibat untuk membantu memastikan akurasi dan kelengkapan pekerjaan serta komitmen terhadap proyek.
- 2. WBS menjadi dasar dalam penganggaran dan penjadwalan.
- 3. WBS menjadi alat kontrol pelaksanaan proyek, dimana pekerjaan yang dilakukan dapat dibandingkan dengan WBS ini.

Perencanaan WBS dapat menjadi dasar dalam pendefinisian pekerjaan sebagai bagian dari tujuan proyek dan menetapkan struktur untuk mengelola pekerjaan tersebut hingga selesai. Dalam perancangan WBS terdapat 8 langkah yang dapat diikuti (Purwadi, 2016), diantaranya:

1. Menemukan produk luaran dari proyek

Setiap aktivitas dalam proyek memilki *deliverables* (produk luaran) tersendiri, fokus utama proyek sebagian besar berasal dari kebutuhan klien.

2. Buat dan tinjau struktur awal dari *Product Breakdown Structure* (PBS)

Dalam tahap ini, teradapat 2 langkah dalam tahap ini, yaitu:

- Membangun PBS. PBS dapat dibuat dalam bentuk grafik garis besar yang menunjukan rangkaian produk luaran proyek hingga selesai, dengan mengidentifikasi produk luaran yang terpenting berdasarkan level.
- 2) Presentasi PBS kepada klien. Pada tahap ini, terjadi persetujuan tentang produk luaran proyek antara klien dengan tim proyek.

3. Rinci PBS

Dalam tahap ini, melengkapi bagan yang telah dibuat hingga menjadi satu set PBS. Pembuatan PBS dilakukan dengan menggunakan 4 level tingkatan dalam visual grafik. Level ini memberi informasi untuk mengontrol proyek dan mengelola tim proyek.

4. Mendefinisikan aktivitas proyek

Dalam fase ini, manajer proyek mendelegasikan otoritas hasil produk luaran kepada individu tertentu, dengan tujuan menetapkan aktivitas untuk mengerjakan produk luaran tersebut, serta pelaporan status penyelesaian aktivitas tersebut.

5. Membangun jaringan aktivitas

Tahap ini, mengaitkan aktivitas-aktivitas yang telah didefinisikan sebelumnya dalam WBS *process*. Diagram jaringan yang dibuat berorientasi waktu dan berurutan dengan logis dari aktivitas sebelumnya.

6. Penugasan sumber daya

Tahap ini, dilakukan pelengkapan dari jaringan yang telah dibuat dengan mengidentifikasi sumber daya untuk setiap aktivitas serta penanggung jawabnya.

7. Estimasi durasi proyek

Dalam tahap ini, setiap anggota tim proyek menetapkan waktu yang diperlukan untuk menyelesaikan aktivitas yang mereka kerjakan.

8. Memastikan Project Timeline

Tahap selanjutnya adalah memastikan bahwa struktur aktivitas yang telah dibuat sesuai dengan estimasi durasi pengerjaan proyek serta hubungan *predecessor* dan *successor* dari setiap aktivitas proyek.

2.5 Bar Charts

Bar charts atau gantt charts merupakan rencana kerja yang banyak digunakan karena sederhana, mudah dibuat dan mudah dimengerti pengguna. Bar charts adalah daftar kegiatan yang disusun dalam kolom vertikal dengan kolom horizontalnya menunjukan waktu. Durasi kegiatan digambarkan dengan panjang diagram batang sehingga mulai dan akhir kegiatan dapat jelas terlihat. Menurut (Wulfram I., 2006) terdapat beberapa langkah untuk membuat bar charts, yaitu:

1. Membuat daftar kegiatan.

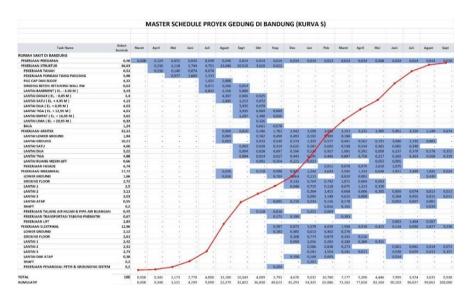
Daftar kegiatan berisi seluruh jenis kegiatan pekerjaan rencana dalam proyek.

2. Mengurutkan kegiatan.

Dari daftar kegiatan yang telah dibuat, diurutkan berdasarkan urutan prioritas kegiatan yang akan dilaksanakan dahulu dan yang akan dilakukan setelahnya, serta terdapat juga kemungkinan dilaksanakan bersamaan.

3. Menghitung waktu pelaksanaan kegiatan.

Seluruh kegiatan dari awal hingga akhir dihitung waktu pelaksanaannya. Waktu perlaksanaan didapat dari penjumlahan waktu untuk menyelesaikan setiap pekerjaan.


NO	URAIAN PEKERJAAN	JUMLAH HARGA (RP.)	BOBOT (%)	WAKTU PELAKSANAAN PEKERJAAN = 4 BULAN															
				MARET 2017			APRIL 2017			MEI 2017			JUNI 2017						
				1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
A	PEKERJAAN PENDAHULUAN	26,651,680.00	7.50	3.75	3.75														
В	PEKERJAAN PONDASI	53,663,264.00	15.10			5.03	5.03	5.03											
С	PEKERJAAN STRUKTUR	100,000,000.00	28.14			1		7.04	7.04	7.04	7.04								
D	PEKERJAAN DINDING BATA	40,000,000.00	11.26						2.81	2.81	2.81	2.81							
E	PEK. KUSEN, PINTU, JENDELA, DAN AKSESORIS	30,000,000.00	8.44		-				1.41	1.41	1.41	1.41	1.41	1,41					
F	PEKERJAAN INSTALASI LISTRIK	15,000,000.00	4.22	B	AR-C	CHA	RT				0.60	0.60	0.60	0.60	0.60	0.60	0.60		
G	PEKERJAAN SANITAIR	15,000,000.00	4.22								0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	
Н	PEKERJAAN ATAP BETON	55,000,000.00	15.48									3.10	3.10	3.10	3.10	3.10			
1	PEKERJAAN FINISHING	20,000,000.00	5.63												1.13	1.13	1.13	1.13	1.13
JUMLAH = 355,314,944.00			100.00			_													_
RENCANA PROGRESS MINGGUAN (%) =			0.00	3.75	3.75	5.03	5.03	12.07	11.26	11.26	12.39	8.45	5.63	5.63	5.35	5.35	2.26	1.65	1.13
RENCANA PROGRESS KOMULATIF (%) =			0.00	3.75	7.50	12.54	17.57	29.64	40.90	52 16	64.54	72.99	78.63	84.26	89.61	94.96	97.22	98.87	100.0

Gambar 2.1 Bar Charts

2.6 Kurva S

Kurva S adalah grafik hubungan antara kemajuan pelaksanaan proyek dengan waktu penyelesaian. Menurut (Hafnidar, 2016) terdapat beberapa aturan-aturan dalam membuat kurva s yang harus dipenuhi yaitu:

- 1. Pada 25% waktu pertama grafiknya naik landai hingga 10%.
- 2. Pada 50% waktu, grafik naik terjal hingga 45%.
- 3. Pada 75% waktu, grafik naik terjal hingga 82%.
- 4. Pada waktu terakhirnya, grafik naik landai hingga 100%.

Gambar 2.2 Kurva S

Masih menurut (Hafnidar, 2016), terdapat beberapa kelebihan dari Kurva S dan *Bar Charts* diantaranya:

- 1. Mudah membaca waktu mulai dan selesainya kegiatan.
- 2. Memberikan informasi pelaksanaan pekerjaan tersebut lebih cepat, normal atau terjadi keterlambatan pada proyek.
- Memberi informasi persentase pekerjaan yang telah selesai.
 Sedangkan kelemahan dari Kurva S dan Bar Charts diantaranya:
- 1. Tidak memberikan rincian pekerjaan seperti susunan pekerjaan dilapangan.
- 2. Tidak memberikan informasi hubungan ketergantungan antar kegiatan.
- 3. Tidak adanya informasi tentang kegiatan yang berada pada jalur kritis.

2.7 Network Planning

Gray dan Larson (2006) mendefinisikan *network planning* adalah alat untuk merencanakan, menjadwalkan dan mengendalikan kemajuan suatu proyek. *Network planning*/diagram jaringan adalah metode yang dianggap mampu menyuguhkan Teknik dasar dalam menentukan urutan dan waktu kegiatan, yang

pada giliran selanjutnya digunakan untuk memprediksi waktu selesai proyek secara keseluruhan(Wahyudi, 2011). Dari banyaknya variasi analisis jaringan kerja, terdapat beberapa metode yang paling umum digunakan yaitu *Critical Path Method* (CPM), *Project Evaluation and Review Technique* (PERT), dan *Precedence Diagam Method* (PDM). Jika CPM dan PERT digambarkan dengan *activity on arrow* (AOA) maka PDM digambarkan dengan *activity on node* (AON) (Soeharto, 1999).

Gray dan Larson (2006) menyebut beberapa istilah dalam membangun diagram jaringan proyek, diantaranya:

- 1. Aktivitas, yaitu suatu elemen yang memerlukan waktu.
- 2. Aktivitas gabungan, yaitu aktivitas yang memiliki lebih dari satu kegiatan yang mendahului.
- 3. Aktivitas pararel, yaitu aktivitas yang berjalan bersamaan dengan aktivitas lain.
- 4. Jalur, yaitu urutan berbagai aktivitas yang saling berhubungan dan tergantung satu sama lain.
- 5. Predessesor, yaitu aktivitas pendahulu.
- 6. Successor, yaitu aktivitas pengganti atau yang mengikuti.
- 7. Jalur kritis, yaitu jalur terpanjang pada jaringan. Jika satu aktivitas tertunda, otomatis proyek juga tertunda pada waktu yang sama.
- 8. Aktivitas menggelembung, yaitu aktivitas ini mempunyai lebih dari satu aktivitas yang mengikuti.
- 9. *Event*, yaitu istilah penunjuk satu titik waktu dimana suatu kegiatan dimulai atau selesai.

2.7.1 Activity on Arrow (AOA) dan Activity on Node (AON)

Activity on Arrow (AOA) adalah diagram kerja dengan tanda anak panah yang digambarkan mewakili aktivitas yang dilakukan. AOA mudah untuk menggambarkan waktu mulai dan akhir dan AOA juga dapat menujukan urutan dari awal hingga akhir merupakan keunggulan dari AOA.

Jika CPM dan PERT digambarkan dengan *activity on arrow* (AOA) maka PDM digambarkan dengan *activity on node* (AON). (Soeharto, 1999) *Activity on*

Node (AON) adalah diagram kerja yang memiliki simpul-simpul yang menggambarkan aktivitas yang dikerjakan. Keunggulan dari AON yaitu tidak memerlukan penggunaan *dummy*.

Perbandingan dari *Activity on Arrow* (AOA) dan *Activity on Node* (AON) dapat dilihat pada Tabel 2.1 dibawah.

Tabel 2.1 Perbedaan AON dan AOA

Activity on Node (AON)	Keterangan	Activity on Arrow (AOA)
	Kegiatan D tidak bisa berjalan jika A dan B	
(A)	belum selesai keduanya, sedangkan kegiatan C	$\bigcirc A \bigcirc C \bigcirc C$
B ©	tidak bisa berjalan jika B belum selesai. Pada	
	AOA <i>dummy</i> digunakan pada kegiatan A.	
A	Kegiatan A dan B harus selesai sebelum	
В	dimulainya C.	B C
B	Kegiatan B dan C tidak bisa berjalan jika A	
•	belum selesai.	C A
(A)	Kegiatan C dan D tidak bisa berjalan jika	Q, Q
(B) (C)	kegiatan A dan B belum selesai keduanya.	

Activity on Node (AON)	Keterangan	Activity on Arrow (AOA)
	Kegiatan B dan C tidak	
	bisa berjalan jika A	
	belum selesai. Kegiatan	
	D hanya dapat berjalan	
	jika B dan C selesai.	,
	Pada kegiatan A dalam	
	AOA Kembali	
	digunakan <i>dummy</i> .	

Sumber: (Soeharto, 1999)

2.8 Critical Path Method (CPM)

Critical Path Method (CPM) T.Hani Handoko mengatakan CPM adalah metode untuk mengoptimalkan biaya proyek dengan menetapkan waktu dan pertukaran biaya untuk memenuhi jadwal proyek dan mengurangi biaya. Dengan CPM, jumlah waktu yang dibutuhkan untuk menyelesaikan berbagai tahap proyek dianggap jelas, dan hubungan antara jumlah sumber yang digunakan dan waktu yang diperlukan untuk menyelesaikan proyek juga diketahui (Bangun, 2016).

Dalam CPM, dikenal istilah jalur kritis dan *dummy*. Jalur kritis adalah jaringan kerja yang memiliki rangkaian-rangkaian kegiatan dengan total waktu terlama dan menunjukan waktu selesai tercepat. Kegiatan-kegiatan yang melewati jalur kritis diusahakan tidak terlambat selesai. Apabila kegiatan pada jalur kritis maka proyek akan terlampat secara keseluruhan (Bangun, 2016).

Terdapat beberapa ciri pada jalur kritis yaitu:

- 1) Jalur dengan waktu terpanjang dalam suatu proses.
- 2) Jalur tidak memiliki waktu tenggang dari mulai hingga selesai kegiatan.
- 3) Tidak ada tenggang waktu tersebut merupakan sifat kritis dari jalur kritis.

Dummy adalah aktivitas yang tidak mempunyai waktu pelaksanaan dan hanya diperlukan untuk menunjukkan adanya hubungan di antara dua kegiatan (Bangun, 2016). Karena dummy adalah kegiatan semu, tidak ada waktu yang dihabiskan untuk bekerja.

2.9 Project Evaluation and Review Technique (PERT)

Menurut T. Hari Handoko *Project Evaluation and Review Technique* (PERT) adalah suatu metode analisis untuk membantu dalam penjadwalan dan pengendalian proyek-proyek kompleks, dengan masalah utama yaitu masalah teknik dalam penjadwalan kegiatan beserta anggaran biayanya sehinnga proyek dapat selesai tepat waktu dan biaya. PERT divisualisasikan dengan grafik yang mengilustrasikan sebuah proyek (Bangun, 2016).

Menurut Soeharto, terdapat tiga perkiraan waktu biasanya digunakan untuk setiap aktivitas pada metode PERT (Soeharto, 1999), yaitu:

- 1) Waktu Optimis (a) adalah perkiraan waktu yang paling singkat untuk menyelesaikan aktivitas.
- 2) Waktu Perkiraan Paling Mungkin (m) adalah waktu yang memiliki kemungkinan tertinggi untuk menyelesaikan aktivitas (berbeda dengan waktu yang diharapkan).
- 3) Waktu Pesimis (b) adalah perkiraan waktu terpanjang yang mungkin diperlukan untuk menyelesaikan aktivitas.

2.10 Presedence Diagram Method (PDM)

Menurut Soeharto (1999) *Presedence Diagram Method* (PDM) adalah metode jaringan kerja yang dikenal karena jalur kritis, yaitu jalur dengan rangkaian komponen-komponen kegiatan dengan total jumlah waktu terlama dan menunjukan kurun waktu penyelesaian proyek tercepat (Soeharto, 1999). PDM merupakan pengembangan dari *bar chart*. Pada tahun 1980-2000 seiring dengan perkembangan kemajuan komputer, atribut PDM terus bertambah seperti jenis hubungan, *lag*, dan *lead time value* pada depensi, beberapa sumber daya pada kegiatan (Oktavia, 2018).

PDM menjelaskan hubungan seri antara dua kegiatan dengan salah satu kegiatan merupakan pengikut dari kegiatan pendahulunya, hubungan ini dikenal dengan nama *dependances* (ketergantungan) dan *precendence* (yang didahulukan), pengaturan ini diutamakan dengan hubungan logika ketergantungan antar kegiatan. Pada metode PDM, *node* digambarkan dengan kotak dengan penghubung ketergantungan antar kegiatannya berupa anak panah (*arrow*).

2.10.1 Kontrain / Hubungan Logis

Pada metode PDM juga dikenal dengan Konstrain/hubungan logis. Pada setiap node hanya memiliki satu ujung awal atau mulai (S) dan satu ujung akhir atau selesai (F). oleh karena itu, satu konstrain hanya dapat menghubungkan dua node (Abidin, 2021).

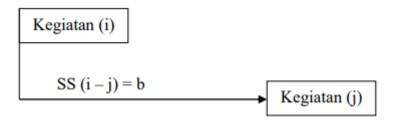
Menurut (Soeharto, 1999) terdapat beberapa jenis konstrain diantaranya:

1. Finish to start (FS)

Konstrain ini menjelaskan hubungan bahwa mulainya (*Start*) kegiatan berikutnya tergantung pada selesainya (*Finish*) kegiatan. Konstrain ini dirumuskan dengan:

$$FS(i - j) = a$$

Dimana kegiatan (j) mulai dengan a hari, setelah kegiatan yang mendahuluinya (i) selesai. Konstrain ini dapat digambarkan dengan Gambar 2.3.

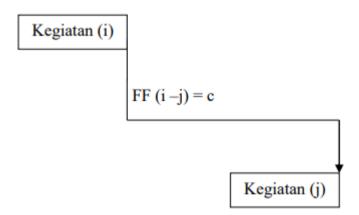

Gambar 2.3 Hubungan Finish to Start (FS)

2. Start to Start (SS)

Konstrain ini menjelaskan hubungan mulainya (*Start*) kegiatan berikutnya tergantung pada mulainya (*Start*) kegiatan sebelumnya. Konstran ini dapat dirumuskan dengan:

$$SS(i-i) = b$$

Dimana suatu kegiatan (j) mulai setelah b hari kegiatan terdahulu (i) mulai. Dalam konstrain ini, kegiatan (j) boleh dimulai setelah bagian tertentu dari kegiatan (i) selesai. Angka b tidak boleh melebihi angka waktu kegiatan terdahulu. Konstran ini dapat digambarkan seperti pada Gambar 2.4.

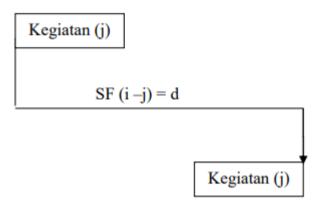

Gambar 2.4 Hubungan Start to Start (SS)

3. Finish to Finish (FF)

Konstran ini menjelaskan hubungan selesainya (*Finish*) kegiatan berikutnya tergantung pada selesainya (*Finish*) kegiatan sebelumnya. Konstran ini dirumuskan seperti berikut ini:

$$FF(i - j) = c$$

Dimana suatu kegiatan (j) selesai setelah c hari kegiatan terdahulu (i) selesai. Konstran ini mencegah suatu kegiatan selesai sebelum kegiatan terdahulu mencapai targetnya (c) selesai. Angka c tidak boleh lebih dari waktu kegiatan yang bersangkutan (j). Konstran ini dapat digambarkan seperti pada Gambar 2.5.


Gambar 2.5 Hubungan Finish to Finish (FF)

4. Start to Finish (SF)

Konstran ini menjelaskan bahwa selesainya (*Finish*) kegiatan berikutnya tergantung pada mulainya (*Start*) kegiatan sebelumnya. Dimana dirumuskan seperti berikut:

$$SF(i - j) = d$$

Dimana kegiatan (j) selesai setelah d hari kegiatan (i) sebelumnya mulai. Dengan kata lain, Sebagian dari kegiatan terdahulu harus selesai sebelum kegiatan yang bersangkutan selesai. Konstran ini dapat digambarkan seperti pada Gambar 2.6.

Gambar 2.6 Hubungan Start to Finish (SF)

2.10.2 Lambang PDM

Dalam penggunaan metode PDM ini, agar memudahkan untuk mengidentifikasi maka digunakan lambang (Wulfram I., 2006). Lambang atau *node* PDM dapat dilihat pada Gambar 2.7.

ES	Jen	is	EF		
LS	Kegia	LF			
No	Keg	Du	rasi		

Gambar 2.7 Lambang Precedence Diagram Method (PDM)

Dimana:

• ES (Earliest Start) adalah waktu mulai paling awal kegiatan dimulai.

- EF (*Earliest Finish*) adalah waktu selesai paling awal kegiatan selesai. Jika terdapat satu kegiatan terdahulu, maka EF kegiatan pendahulu adalah ES kegiatan selanjutnya.
- LS (*Latest Start*) adalah waktu paling lambat dimulainya suatu kegiatan.
- LF (*Latest Finish*) adalah waktu paling lambat suatu kegiatan diselesaikan.

2.10.3 Perhitungan dalam metode PDM

1. Perhitungan Maju

Perhitungan ini dilakukan untuk mencari ES dan EF, apabila anak panah yang masuk lebih dari satu, maka diambil nilai terbesar. Dalam mencari ES dan EF digunakan rumus:

$$ES = EF - Durasi atau EF = ES + Durasi$$

2. Perhitungan Mundur

Perhitungan ini dilakukan untuk mencari LS dan LF, apabila anak panah yang masuk lebih dari satu, maka diambil nilai terkecil. Rumus yang digunakan yaitu:

$$LS = LF - Durasi atau LF = LS + Durasi$$

3. Perhitungan *Total Float*

Float adalah batas toleransi keterlambatan suatu kegiatan yang dapat dimanfaatkan untuk optimalisasi waktu dan alokasi sumber daya(Abidin, 2021). Terdapat dua jenis *float*, diantaranya:

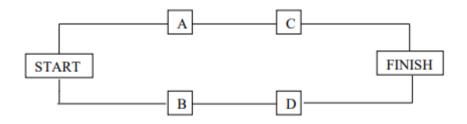
• Total Float (TF)

Total float yaitu waktu yang dapat digunakan untuk menunda suatu kegiatan tanpa mengganggu selesainya proyek tepat waktu. Rumus untuk TF yaitu:

$$Total\ Float(TF) = LF - EF atau\ LSj - EFi$$

• Free Float (FF)

Free float yaitu waktu yang dapat digunakan untuk menunda suatu kegiatan tanpa mengganggu mulainya kegiatan yang mengikutinya. FF dapat dicari dengan rumus:


$$Free\ Float(FF) = ESj - EFi$$

2.10.4 Jalur Kritis Metode PDM

Jalur kritis adalah jaringan kerja yang memiliki rangkaian-rangkaian kegiatan dengan total waktu terlama dan menunjukan waktu selesai tercepat. Kegiatan-kegiatan yang melewati jalur kritis diusahakan tidak terlambat selesai. Apabila kegiatan pada jalur kritis maka proyek akan terlampat secara keseluruhan (Bangun, 2016). Jalur kritis metode PDM didapat setelah selesai perhitungan maju dan mundur. Jalur kritis memiliki ciri yaitu:

$$ES = LS$$
, atau $EF = LF$, atau $LF = ES = Durasi kegiatan, atau $TF = 0$$

Kelebihan dari metode PDM yaitu metode ini tidak memerlukan *dummy*, karena hubungan *overlapping* yang berbeda dapat dibuat tanpa menambah jumlah kegiatan. Selain itu, hubungan tumpang tindih juga dapat dibuat tanpa menambah kegiatan. Sehingga pembuatan jaringan lebih sederhana. Jika kegiatan awal dan akhir lebih dari satu, maka pada jaringan digunakan kegiatan *dummy* awal atau akhir. Kelebihan PDM dapat dilihat pada Gambar 2.8.

Gambar 2.8 Precedence Diagram method (PDM)

2.11 Metode Percepatan Pelaksanaan Pekerjaan (Crash Program)

Crashing adalah proses merubah metode pekerjaan yang berpengaruh pada durasi penyelesaian proyek. Hal ini dilakukan dengan memperkirakan variable cost

agar mengurangi durasi yang maksimal dan ekonomis dari suatu kegiatan yang memungkinkan untuk direduksi (Ervianto, 2004).

Dengan metode *crashing*, waktu dari suatu pekerjaan dapat dipersingkat dengan menambah sumber daya dan biaya langsung. Dalam melakukan proses *crashing*, setiap kegiatan harus memiliki informasi berikut, diantaranya:

- 1. Perkiraan biaya setiap pekerjaan dalam situasi normal.
- 2. Penyelesaian proyek dalam kondisi percepatan merupakan waktu tercepat yang dapat dilakukan di bawah kondisi percepatan.
- 3. Perkiraan biaya tenaga kerja dalam kondisi percepatan.

Dengan melakukan percepatan terdapat beberapa masalah yang mungkin muncul diantaranya, biaya yang diperlukan lebih besar dari perencanaan serta kualitas yang cenderung lebih rendah. Sebagai contoh, saat dilakukan *crashing* dengan lembur maka upah akan bertambah namun produktivitas tenaga kerja akan menurun angkanya.

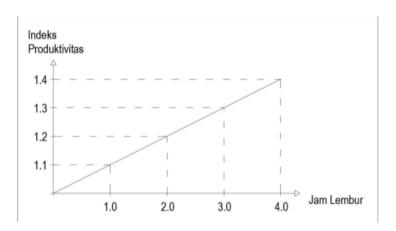
Menurut (Frederika dalam Violita, 2020) dalam melaksanakan percepatan suatu proyek, terdapat 4 faktor yang bisa dioptimalkan, diantaranya:

- 1. Menambah tenaga kerja.
- 2. Penjadwalan lembur.
- 3. Menambah atau mengganti alat yang lebih produktif.
- 4. Mengubah metode pelaksanaan.

2.11.1 Produktivitas Tenaga Kerja

Produktivitas adalah perbandingan hasil yang dicapai dengan seluruh sumber daya atau perbandingan jumlah produktivitas (*input*) dengan sumber daya yang digunakan (*output*) (Setiawan dalam Violita, 2020).

Produktivitas tenaga kerja =
$$\frac{1}{\text{Koefisien tenaga kerja}}$$

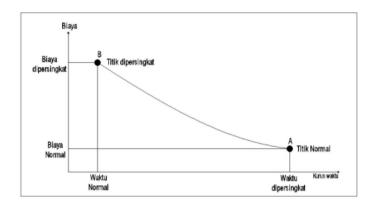

Atau

$$Produktivitas tenaga kerja = \frac{Volume}{Durasi \times Jumlah tenaga kerja}$$

Menurut (Kaming dalam Violita, 2020) terdapat 3 faktor yang berpengaruh pada produktivitas, diantaranya:

- Metode dan teknologi yang digunakan seperti desain rekayasa, metode konstruksi, urutan dan pengukuran kerja.
- Manajemen lapangan seperti perencanaan dan penjadwalan, *lay out* lapangan, komunikasi, manajemen material, alat dan tenaga
 kerja.
- 3. Faktor manusia seperti upah, kepuasan kerja, insentif, hubungan kerja mandor-pekerja, sejawat dan kemangkiran.

Penurunan produktivitas tenaga kerja akibat jam lembur dapat ditunjukan seperti pada Gambar 2.9.


Gambar 2.9 Grafik Indikasi Turunnya Produktivitas Akibat Kerja Lembur (Sumber: Soeharto, 1997)

2.11.2 Penambahan Tenaga Kerja

Dalam melakukan penambahan tenaga kerja, terdapat beberapa hal yang harus diperhatikan yaitu:

- 1. Bersedianya pekerja untuk menjadi pekerja tidak tetap.
- 2. Produktivitas tenaga kerja akan terjaga.
- 3. Kerjasama dalam tim akan berkurang.

Hubungan waktu-biaya normal serta waktu-biaya pada percepatan, dapat dilihat pada Gambar 2.10. Dimana apabila waktu dipercepat, maka biaya yang dibutuhkan akan meningkat dari biaya normal akibat peningkatan biaya langsung.

Gambar 2.10 Grafik Hubungan Waktu-Biaya Normal dan Dipersingkat (Sumber: Soeharto, 1997)

2.11.3 Penambahan Kerja Lembur

Metode jam kerja lembur dilakukan untuk mempercepat durasi pekerjaan dengan menggunakan rencana kerja sebagai berikut:

- 1. Waktu kerja normal adalah 8 jam (08.00-17.00), dan lembur dilakukan setelah jam kerja normal.
- 2. Upah kerja lembur sesuai KEP.102/MEN/VI/2004 pasal 11 dihitung sebagai berikut:
 - 1) Perhitungan upah lembur berdasarkan pada upah bulanan.
 - 2) Cara menghitung upah kerja lembur, diantaranya dengan rumus:
 - a. Upah jam lembur pertama = $1.5 \times$ upah sejam.
 - b. Upah jam lembur kedua dan seterusnya = $2 \times$ upah sejam.
 - 3) Penambahan jam lembur dalam satu hari hanya boleh 3 jam dan 14 jam dalam seminggu.
 - 4) Memberikan makan dan minum minimal 1400 kalori jika lembur selama 3 jam.

Dalam melaksanakan lembur, terdapat hal-hal yang perlu diperhatikan yaitu:

- 1. Bersedianya pekerja untuk melakukan lembur.
- 2. Penurunan produktivitas kerja para pekerja.
- 3. Upah harus dibayar lebih tinggi dari upah yang biasa dibayarkan.
- 4. Tidak perlu tambahan tenaga kerja.

5. Perlu adanya penambahan penerangan karena biasanya lembur diadakan sampai malam hari.

2.12 Oracle Primavera P6 Professional 23

Oracle Primavera P6 Professional 23 adalah aplikasi untuk mengelola proyek konstruksi dengan cakupan yang lengkap, terukur serta terintegrasi dalam merencanakan, mengorganisasi serta pengawasan proyek. Aplikasi ini dapat digunakan untuk perencanaan penjadwalan waktu, biaya, sumber daya dan tenaga kerja untuk proyek besar maupun kecil. Aplikasi ini dikembangkan oleh perusahaan Primavera System Inc. yang merupakan perusahaan bidang software manajemen konstruksi dengan cakupan yang lengkap dan terintegrasi untuk perencanaan, pengorganisasian, pemantauan dan koordinasi (Alif, 2022).

Penggunaan alat bantu berupa komputer dan aplikasi penunjang dalam merencanakan penjadwalan, hal tersebut dapat memberikan manfaat dengan meminimalisir terjadinya kesalahan dan mempercepat pengerjaan serta meningkatkan ketelitian dalam mengolah data dalam jumlah besar. Keunggulan dari penggunaan aplikasi *Oracle Primavera P6 Professional 23* diantaranya:

- 1. Mengatur informasi proyek dengan kerangka strukturalnya menggunakan kode-kode aktivitas, sumber daya serta tanggal.
- 2. Memiliki kapasitas hingga 100.000 kegiatan per proyek.
- 3. Mampu mengontrol dan membuat jadwal pekerjaan yang kompleks.
- 4. Mampu mengendalikan sumber daya dan durasi pada setiap kegiatan.
- 5. Bisa menghitung biaya pada setiap jenis pekerjaan dan total proyek.
- 6. Mengendalikan biaya dan jadwal proyek.

Output yang dapat dihasilkan dari mengolahan data pada aplikasi Oracle Primavera P6 Professional 23 diantaranya:

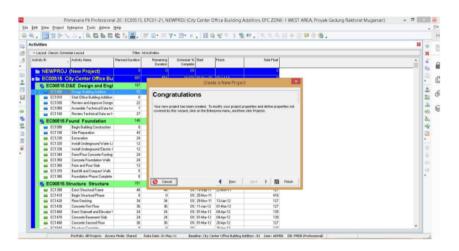
- 1. Lay Out Gantt Chart (Diagram batang).
- 2. Budgeted Cost (Anggaran biaya proyek).
- 3. Resource Profile (Profil sumber daya).
- 4. *Resource Table* (Tabel sumber daya).

Dalam mendukung kebutuhan manajemen proyek seperti manajemen waktu, biaya, sumber daya dan pengelolaan proyek skala besar, *Oracle Primavera P6 Professional 23* dirancang untuk terintegrasi dengan manajemen proyek PPM (*Portofolio Project Management*). Dengan PPM memungkinkan suatu organisasi melakukan hal-hal berikut:

- 1. Membuat strategi pelaksanaan.
- 2. Mengendalikan detail untuk menyelesaikan proyek.
- 3. Memahami kebutuhan sumber daya, prioritas serta evaluasi kebutuhan staff jangka panjang.
- 4. Optimalisasi sumber daya dengan baik dan merata.
- Mengendalikan proyek sesuai dengan pergeseran prioritas tanpa mengesampingkan kualitas.

Dalam penggunaan *Oracle Primavera P6 Professional 23* terdapat beberapa istilah khusus yang harus diperhatikan diantaranya:

- 1. *Task* yaitu lebar kerja pada *primavera* yang berisi rincian pekerjaan serta perintah untuk proses pengelompokan pekerjaan.
- 2. **Duration** adalah waktu yang dibutuhkan untuk menyelesaikan pekerjaan.
- 3. *Start* yaitu tanggal mulainya suatu pekerjaan.
- 4. *Finish* yaitu tanggal selesai suatu pekerjaan.
- 5. *Predecessor* yaitu hubungan keterkaitan antar pekerjaan.
- 6. **Resource** adalah sumber daya material maupun manusia.
- 7. *Cost* yaitu biaya untuk gaji maupun material yang digunakan.
- 8. *Pert Chart* adalah diagram hubungan antar pekerjaan yang digambarkan dengan bentuk *network diagram*.
- 9. *Baseline* yaitu rencana jadwal atau biaya yang telah ditetapkan dan digunakan untuk acuan perbandingan rencana dan *actual* dilapangan.
- 10. *Hasil Gantt Chart* adalah salah satu tampilan hasil kerja yang berupa batang horizontal dari masing-masing pekerjaan dengan durasinya.
- 11. *Tracking* yaitu peninjauan hasil dilapangan dengan rencana pada *primavera*.
- 12. *Milestone* yaitu penanda perkembangan proyek pada suatu posisi pekerjaan agar mudah diketahui.

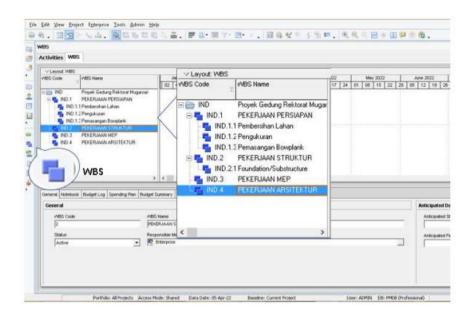

Dalam menyusun rencana penjadwalan proyek pada aplikasi *Oracle Primavera P6 Professional 23*, dapat dilakukan dengan mengikuti langkah-langkah berikut (Alif, 2022):

1. Membuka lembar kerja baru

Langkah pertama dilakukan dengan klik *Start* > **Program** > *Primavera* **P6.**

2. Membuat file proyek baru

Selanjutnya pilih menu *File > New > Select EPS > Next >* Tentukan tanggal mulai proyek pada *Project ID >* Tentukan nama proyek pada *Project Name > Next >* Tentukan tanggal selesai proyek pada *Must Finish By > Next >* Memasukan nama kepala proyek pada *Responsible Manager > Next >* Tentukan satuan yang digunakan pada *Rate Type > Next >* Tentukan arsitek digunakan atau tidak pada *Project Architect > Next > Finish*.

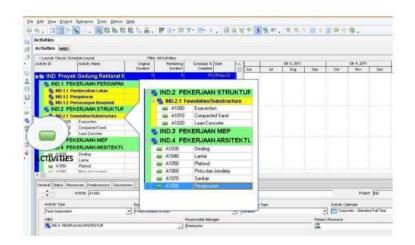


Gambar 2.11 Membuat File Project Baru

(Sumber: Alif, 2022)

3. Menginput Work Breakdown Structure (WBS)

Dalam menginput WBS dapat dilakukan dengan buka *project* yang telah dibuat > Buat *Work Breakdown Structure (WBS)* > Klik menu **WBS** > Isi urutan pekerjaan.

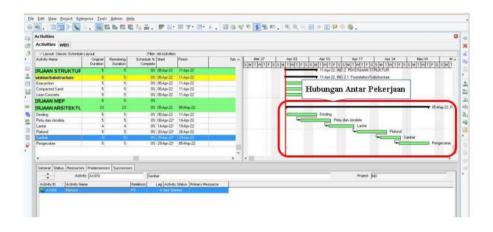


Gambar 2.12 Menyusun Work Breakdown Structure (WBS)

(Sumber: Alif, 2022)

4. Membuat aktivitas hubungan pekerjaan

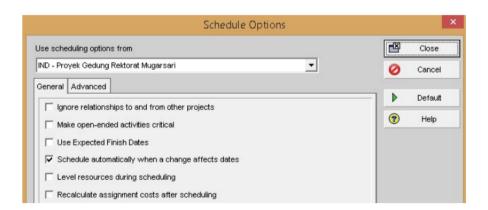
Dalam membuat aktivitas hubungan pekerjaan dapat dilakukan dengan memilik menu *Activities* > Mengisi list pekerjaan > *Klik* (+) untuk menambah aktivitas > Menentukan durasi pekerjaan berdasar volume pekerjaan pada *Original Duration*.



Gambar 2.13 Menyusun Aktivitas

(Sumber: Alif, 2022)

5. Membuat hubungan antar pekerjaan


Hubungan antar pekerjaan pada tab *Relationship* Finish to Start (FS), Start to Finish (SF), Finish to Finish (FF), Start to Start (SS) > Hubungan antar pekerjaan berdasarkan gambar kerja > Klik pada aktivitas > tentukan *Predesessor*.

Gambar 2.14 Membuat Hubungan Antar Pekerjaan (Sumber: Alif, 2022)

6. Menyusun kalender kerja

Tahapan ini dilakukan untuk menentukan hari kerja dan jam kerja. Langkahnya yaitu dengan klik menu *Tools > Schedule > Option > Schedule Automatically when a Change effect dates > Close > schedule*.

Gambar 2.15 Menyusun Kalender Kerja

(Sumber: Alif, 2022)