BAB 2 LANDASAN TEORI

2.1 Penelitian Terdahulu

Penelitian terdahulu digunakan sebagai salah satu referensi penulis dalam melakukan penelitian dan untuk memperkaya teori yang digunakan. Adapun penelitian terdahulu yang dijadikan sebagai referensi dalam penelitian disajikan di dalam Tabel 2.1.

Tabel 2.1 Penelitian Terdahulu

No	Judul	Tujuan		Hasil Penelitian
1	Analisis dan Desain	Menganalisis stabilitas	1.	Faktor aman
	Stabilitas Lereng pada	lereng setelah terjadi		stabilitas lereng
	Jembatan Pango	kelongsoran		setelah terjadi
	Menggunakan	menggunakan program		kelongsoran
	Software Rocscience	Rocscience Slide 6.0		sebesar 1,15
	Slide 6.0 (Siregar et	dan memberikan solusi		dengan metode
	al., 2024).	perkuatan pada lereng.		Bishop dan 1,04
				dengan metode
				Fellenius (tidak
				memenuhi
				persyaratan).
			2.	Penambahan
				perkuatan soil
				nailing
				meningkatkan nilai
				faktor aman
				menjadi 1,78
				dengan metode
				Bishop dan 1,55
				dengan metode
				Fellenius.

No	Judul	Tujuan	Hasil Penelitian
2	Perkuatan Soil Nailing	Mengetahui nilai	1. Nilai faktor
	pada Lereng Singajaya	keamanan lereng	keamanan lereng
	Garut.	sebelum diberi	sebelum diberi
	(Tarakashima et al.,	perkuatan dan	perkuatan dengan
	2023)	merencanakan	metode Bishop
		perkuatan yang dapat	sebesar 0,27 dan
		menaikkan nilai	menggunakan
		keamanan lereng.	GeoStudio
			Slope/W student
			version sebesar
			0,20.
			3. Setelah dilakukan
			perkuatan dengan
			variasi sudut
			kemiringan <i>nail</i>
			menghasilkan nilai
			faktor keamanan
			berbeda, yaitu 1,29
			untuk sudut 10°;
			2,19 untuk sudut
			15° dan 1,54 untuk
			sudut 20°.
3	Analisis Perkuatan Soil	1. Menganalisis	1. Didapatkan nilai
	Nailing pada Lereng	stabilitas lereng	FS = 0,914, FS =
	Bawah Jembatan	eksisting dengan	0,802 (kondisi
	Gantung Alas Bayur	program Slope/W	gempa), FS
	Kecamatan	dan fellenius.	fellenius = $0,995$,
	Mlandingan	2. Menganalisis	FS fellenius =
	Kabupaten Situbondo	stabilitas lereng	0,866 (kondisi
	(Abdullah et al., 2021)	setelah	gempa)
		•	

No	Judul	Tujuan	Hasil Penelitian
		menggunakan soil	2. Setelah
		nailing.	menggunakan soil
			nailing 13 bar,
			diameter 32 mm,
			fy 520 Mpa,
			panjang 6 meter,
			diameter lubang
			bor 20 cm dan
			sudut 10
			menghasilkan nilai
			FK slope/w =
			1,513 FK, FK
			slope/w gempa =
			1,305 dan FK
			fellenius = 1,515,
			FK fellenius
			gempa = 1,389
4	Pengaruh Jumlah	Mengetahui pengaruh	Nilai faktor keamanan
	Pemasangan Soil	jumlah pemasangan	lereng sebelum
	Nailing Terhadap	soil nailing terhadap	diperkuat sebesar 1,06.
	Peningkatan Faktor	peningkatan faktor	Faktor keamanan
	Keamanan Lereng.	keamanan lereng.	lereng dengan
	(Budiharjo et al.,		perkuatan soil nailing
	2021)		sebanyak 2 baris, 3
			baris, dan 5 baris pada
			jangka pendek secara
			berurutan sebesar 3,18;
			3,27; dan 3,43.
			Besarnya faktor
			kemanana lereng
			berbanding lurus

No	Judul		Tujuan	Hasil Penelitian
				dengan jumlah soil
				nailing yang terpasang
				pada lereng.
5	Studi pengaruh	1.	Mengetahui	1. Pada lereng yang
	kemiringan, jarak, dan		pengaruh	dianalisis
	panjang soil nailing		kemiringan nail	mengguakan
	terhadap stabilitas		pada soil nailing	variasi kemiringan
	lereng.		untuk perkuatan	nail, diperoleh
	(Simorangkir &		stabilitas lereng.	angka faktor
	Suhendra, 2020)	2.	Mengetahui	keamanan
			pengaruh jarak nail	maksimal adalah
			pada soil nailing	2,04 pada
			untuk perkuatan	kemiringan <i>nail</i> 0°.
			stabilitas lereng.	Namun
		3.	Mengetahui	berdasarkan SNI
			pengaruh panjang	Persyaratan
			nail pada soil	Perencanaan
			nailing untuk	Geoteknik (2017)
			perkuatan stabilitas	kemiringan <i>nail</i>
			lereng.	seharusnya 10°
		4.	Mengetahui besar	sampai 20° di
			kemiringan,	bawah bidang
			panjang, dan jarak	horizontal. Oleh
			antar soil nailing	karena itu, diambil
			yang maksimal	nail dengan
			untuk perkuatan	kemiringan 10°
			stabilitas lereng.	sebagai angka
				faktor keamanan
				maksimal, yaitu
				sebesar 2,03.

No	Judul	Tujuan		Hasil Penelitian
			2.	Pada lereng yang
				dianalisis
				menggunakan soil
				nailing dengan
				variasi jarak antar
				nail diperoleh
				angka faktor
				kemananan
				maksimal 2,04
				pada jarak antar
				nail 3,80 m.
			3.	Pada lereng yang
				dianalisis
				menggunakan soil
				nailing dengan
				variasi panjang
				nail, diperoleh
				angka faktor
				keamanan
				maksimal adalah
				2,04 pada panjang
				nail 6,1 m.
			4.	Untuk mencapai
				angka minimal
				stabilitas lereng
				sebesar 1,5. Lereng
				yang dianalisis
				membutuhkan
				perkuatan soil
				nailing dengan nail
				sepanjang 6,1 m

No	Judul	Tujuan	Hasil Penelitian	
			dengan kemiringan	
			0° dan jarak antar	
			nail 3,8 m.	

2.2 Stratifikasi Tanah

Stratifikasi tanah adalah penyelidikan tanah yang bertujuan untuk mengetahui bentuk, jenis, ketebalan, dan kedalaman lapisan tanah yang berada di bawah permukaan. Untuk melakukan stratifikasi tanah perlu dilakukan pengujian di lapangan.

2.3 Parameter Tanah

Parameter tanah merupakan sifat fisik dan mekanis tanah. Parameter tanah didapatkan dari hasil penyelidikan secara langsung di lapangan atau pengujian di laboratorium (Putra, 2019). Adapun para praktisi menggunakan korelasi tanah untuk memberikan gambaran umum mengenai sifat-sifat tanah. Korelasi yang umum dipakai adalah hubungan dengan nilai N-SPT (Alatas, 2017). Setiap lapisan tanah pada umumnya memiliki karakteristik yang berbeda-beda. Karakteristik tersebut mempengaruhi parameter tanah yang menggambarkan keadaaan kondisi tanah. Parameter tanah yang diperlukan dalam analisis stabilitas lereng yaitu meliputi berat volume (γ), sudut geser (ϕ), dan kohesi (c).

2.3.1 Berat Volume (γ)

Berat volume tanah adalah berat tanah per satuan volume. Nilai tipikal berat volume tanah berdasarkan (Australian Standards, 2002) disajikan di dalam tabel Tabel 2.2.

Tabel 2.2 Nilai Tipikal Berat Volume Kering dan Berat Volume Jenuh

	Berat vol	ume kering	Berat volume jenuh		
Jenis Tanah	(kN/m^3)		(kN/m ³)		
	Lepas Padat		Lepas	Padat	
Kerikil	16,0	18,0	20,0	21,0	

		Berat volume kering		Berat volume jenuh	
Je	enis Tanah	(kN/m^3)	(kN/m^3)		
		Lepas	Padat	Lepas	Padat
	Pasir bergradasi	19,0	21,0	21,5	23,0
	baik dan kerikil	19,0	21,0	21,3	23,0
	Pasir kasar atau	16,5	18,5	20,0	21,5
	sedang	10,5	10,5	20,0	21,3
Tanah	Pasir bergradasi	18,0	21,0	20,5	22,5
Granuler	baik	10,0	21,0	20,3	22,3
Granuici	Pasir halus atau	17,0	19,0	20,0	21,5
	kelanauan	17,0	17,0	20,0	21,3
	Rock fill	15,0	17,5	19,5	21,0
	Brick hardcore	13,0	17,5	16,5	19,0
	Slag fill	12,0	15,0	18,0	20,0
	Ash fill	6,5	10,0	13,0	15,0
	Gambut	12,0	1	12,0	
	Lempung organik	15,0		15,0	
	Lempung lunak	17,0		17,0	
Tanah	Lempung padat	18,0		18,0	
Kohesif	Lempung kaku	19,0		19,0	
	Lempung keras	20,0		20,0	
	Lempung glasial	21,0		21,0	
	keras atau kaku	21,0		21,0	

2.3.2 Sudut Geser Dalam (ϕ)

Kekuatan geser dalam mempunyai variabel kohesi dan sudut geser dalam. Sudut geser dalam bersamaan dengan kohesi menentukan ketahanan tanah akibat tegangan yang bekerja berupa tekanan lateral tanah. Nilai ini juga didapatkan dari pengukuran *engineering properties* tanah berupa *direct shear test*. Hubungan antara sudut geser dalam dan jenis tanah mengacu kepada (Das, 1994) ditujukkan di dalam Tabel 2.3.

Tabel 2.3 Hubungan Sudut Geser Dalam dan Jenis Tanah

Jenis Tanah	Sudut Geser Dalam
Kerikil Kepasiran	35° – 40°
Kerikil	35° – 40°
Pasir Padat	35° – 40°
Pasir Lepas	30°
Lempung Kelanauan	25° – 30°
Lempung Kelanauan	20° – 25°

2.3.3 Kohesi (Cu)

Kohesi merupakan gaya tarik menarik antar partikel tanah. Bersama dengan sudut geser dalam, kohesi merupakan parameter kuat geser tanah yang menentukan ketahanan tanah terhadap deformasi akibat tegangan yang bekerja pada tanah dalam hal ini berupa gerakan lateral tanah. (Kh, 1995)

Nilai kohesi dapat diperoleh dari pengujian laboratorium yaitu pengujian kuat geser langsung (*direct shear strength test*), pengujian triaxial (*triaxial test*). atau dari hasil korelasi terhadap nilai NSPT. Variasi korelasi NSPT dengan nilai kohesi menurut (Terzaghi and Peck, 1967) disajikan di dalam Tabel 2.4.

Tabel 2.4 Variasi Korelasi N-SPT dengan Kohesi

Konsistensi	N	Cu (kN/m²)
Sangat lunak	0 - 2	<1
Lunak	2 - 4	12 - 25
Sedang	4 – 8	25 - 50
Kaku	8 – 15	50 – 100
Sangat kaku	15 – 30	100 – 200
Keras	>30	> 200

2.4 Pembebanan

Dalam menganalisis stabilitas lereng perlu memperhitungkan beban yang menimpa lereng, yatu beban konstruksi jalan, beban lalu lintas, dan beban gempa.

2.4.1 Beban Perkerasan Jalan

Beban perkerasan jalan dapat ditentukan dari nilai berat isi tiap lapisan jalan dan tebal tiap lapisan jalan. Nilai berat isi tanah dan agregat dan berat isi campuran berdasarkan (Peraturan Menteri PUPR, 2022) disajikan di dalam Tabel 2.5 dan Tabel 2.6.

Tabel 2.5 Berat Isi Tanah dan Agregat

No	Nama Bahan	(Bi	si Padat iP) /m³)	Berat Isi Lepas (BiL) (ton/m³)		
		Min	Maks	Min	Maks	
1	Water bound Macadam (5/7), Agregat Kls-C	1,740	1,920	1,582	1,699	
2	Batu belah (gunung/kali)	1,200	1,600	0,914	0,960	
3	Batu kali	1,200	1,700	0,960	0,971	
4	Abu batu hasil pemecah batu	1,400	1,900	1,261	1,624	
5	Chip (lolos 3/4 tertahan No. 4)	1,220	1,300	1,109	1,150	
6	Chip (lolos No. 4 tertahan No.8)	1,430	1,500	1,300	1,327	
7	Gravel/sirtu dipecah dengan pemecah batu	1,620	1,950	1,373	1,473	
8	Agregat halus hasil pemecah batu	1,380	1,540	1,254	1,363	
9	Agregat kasar, hasil pemecah batu	1,320	1,450	1,200	1,283	
10	Agregat Kelas A, Kelas S	1,740	1,850	1,303	1,582	
11	Agregat Kelas B	1,760	1,880	1,324	1,600	
12	Sirtu	1,620	2,050	1,444	1,473	
13	Split, screen hasil pemecah batu	1,400	1,750	1,232	1,273	
14	Pasir pasang, kasar	1,380	1,540	1,243	1,316	
15	Pasir urug	1,300	1,600	1,040	1,151	
16	Agregat ringan	1,300	1,500	0,600	0,750	

No	No Nama Bahan		si Padat iP) /m³)	Berat Isi Lepas (BiL) (ton/m³)	
		Min	Maks	Min	Maks
17	Tanah biasa	1,350	1,650	1,000	1,200
18	Tanah gambut	0,850	1,150	0,600	0,850

Tabel 2.6 Berat Isi Campuran

N	N. D.I.	Berat Isi Padat		Kadar Aspal	
No	Nama Bahan	Min	Maks	Min	Maks
1	AC Base	2,300	2,320	5,000	5,900
2	ACBC	2,300	2,340	5,300	6,300
3	ACWC	2,270	2,350	5,400	6,600
4	SMA	2,240	2,310	5,500	6,400
5	HRS-Base	2,170	2,290	5,360	6,590
6	HRS-WC	2,170	2.290	5,960	6,520
7	Lasbutang dan Latasbusir	2,140	2,340	5,300	6,200
8	Latasir A	2,160	2,250	6,600	7,300
9	Latasir B	2,160	2,220	6,100	6,840
10	Campuran dingin (OGEM, DGEM)	2,150	2,220	5,600	6,300
11	Lapen (Lapis Penetrasi Macadam)	1,650	1,900		
12	WBMA/DBMA	1,740	1,920		
13	LPMA (Lapis Penetrasi Macadam Asbuton)	2,120	2,330	5,300	6,300
14	CTB, CTSB, Soil Semen, RCC	2,140	2,310		
15	Cement Treated Recycled Base (CTRB)	2,065	2,112		
16	Cold Mix Recycled Foam Bitumen (CMRFB)	2,081	2,153	4,950	5,300

2.4.2 Beban Lalu Lintas

Berdasarkan (Badan Standarisasi Nasional, 2017), beban lalu lintas ditentukan berdasarkan kelas jalan yang disajikan di dalam Tabel 2.8. Klasifikasi

kelas jalan mengacu pada (Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 Tentang Lalu Lintas Dan Angkutan Jalan, 2009) yang disajikan di dalam Tabel 2.7.

Tabel 2.7 Klasifikasi Kelas Jalan Berdasarkan Ukuran Kendaraan

Kelas Jalan	Ukuran Kendaraan		
I	Lebar maksimal 2,55 m		
	Panjang maksimal 18 m		
	Tinggi maksimal 4,2 m		
II	Lebar maksimal 2,55 m		
	Panjang maksimal 12 m		
	Tinggi maksimal 4,2 m		
III	Lebar maksimal 2,2 m		
	Panjang maksimal 9 m		
	Tinggi maksimal 3,5 m		

Tabel 2.8 Beban Lalu Lintas untuk Analisis Stabilitas dan Beban di Luar Jalan

Kelas Jalan	Beban Lalu Lintas	Beban di Luar Jalan	
	(kPa)	(kPa)	
I	15	10	
II	12	10	
III	12	10	

2.4.3 Beban Gempa

Pengaruh beban gempa diperhitungkan jika lereng galian atau timbunan direncanakan dibangun di dekat area pemukiman atau dibangun dengan kriteria kepentingan strategis yaitu dengan kondisi tidak boleh mengalami keruntuhan atau terputusnya lajur transportasi setelah terjadi gempa rencana. (Badan Standarisasi Nasional, 2017).

Penentuan spektrum respons desain harus ditentukan berdasarkan klasifikasi situs tanah dengan menggunakan kriteria yang mengacu kepada (Badan Sandarisasi Nasional, 2019) pada Tabel 2.9.

Tabel 2.9 Klasifikasi Situs

Kelas Situs	\overline{V}_{s} (m/detik)	$\overline{\mathbf{N}}$ atau \overline{N}_{ch}	$\overline{S_{\mathrm{u}}}$	
SA (batuan keras)	>1.500	N/A	N/A	
SB (batuan dasar)	750 sampai 1500	N/A	N/A	
SC (tanah keras)	350 sampai 750	> 50	≥ 100	
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100	
SE (tanah lunak)	< 175	< 15	< 50	
Atau, setiap profil tanah yang mengandung tanah dengan karakteristik sebagai berikut:			•	
	 Indeks plastisitas, PI>20 Kadar air, w ≥ 40% Kuat geser niralir, Su < 25 kPa 			
SF (tanah khusus, yang membutuhkan investigasi geoteknik spesifik dan analisis respons spesifik-situs yang mengikuti 0)	 lebih dari karakteristik berikut: Rawan dan berpotensi gagal atau runtuh akibat beban gempa seperti mudah likuifaksi, lempung sangat sensitif tanah tersementasi lemah 			
	 Lempung berplastisitas sangat tinggi (ketebalan H > 7,5 m dengan indeks plastisitas PI > 75) Lapisan lempung lunak/setengah teguh dengan ketebalan H > 35 m dengan \$\overline{S_u}\$ < 50 kPa 			

Keterangan:

Nilai rata-rata tahanan penetrasi standar lapangan.

 \overline{N}_{ch} : Nilai rata-rata tahanan penetrasi standar untuk lapisan tanah non

kohesif

 \bar{V}_{s} : Nilai rata-rata kecepatan gelombang geser (m/detik)

 $\overline{S_{ij}}$: Nilai rata-rata kuat geser niralir lapisan (kPa)

N/A : Tidak dapat dipakai

Faktor keamanan minimum yang disyaratkan untuk analisis menggunakan model pseudostatik adalah lebih besar dari 1,1 dengan menggunakan koefisien seismik yang didapatkan dari percepaatan puncak di permukaan (PGA) dengan penentuan kelas situs dan faktor amplifikasi mengacu kepada (Badan Sandarisasi Nasional, 2019) yang disajikan di dalam Tabel 2.10.

Kelas Situs	PGA ≤ 0,1	PGA = 0,2	PGA = 0,3	PGA = 0,4	PGA ≥ 0,5
220100 21000	$Ss \leq 0,25$	Ss = 0.5	$S_{S} = 0.75$	Ss = 1,0	Ss \geq 1,25
SA (batuan keras)	0,8	0,8	0,8	0,8	0,8
SB (batuan dasar)	1,0	1,0	1,0	1,0	1,0
SC (tanah keras)	1,2	1,2	1,1	1,0	1,0
SD (tanah sedang)	1,6	1,4	1,2	1,1	1,0
SE (tanah lunak)	2,5	1,7	1,2	0,9	0,9
Tanah khusus	SS	SS	SS	SS	SS

Tabel 2.10 Faktor Amplifikasi untuk PGA dan Periode 0,2 detik (Fpga dan Fa)

Keterangan:

(SF)

- PGA = percepatan puncak batuan dasar (SB) mengacu pada peta gempa dengan periode ulang rencana sesuai persyaratan infrastruktur yang digunakan.
- Ss = Percepatan spektral respons horizontal di batuan dasar (SB) pada periode 0,2 detik dengan periode ulang rencana sesuai persyaratan infrastruktur yang digunakan.
- SF = Lokasi yang memerlukan investigasi geoteknik dan analisis respons spesisfik-situs.

2.5 Stabilitas Lereng

Stabilitas lereng adalah salah satu aspek yang penting dalam ilmu Teknik Sipil. Aspek ini selalu dipertimbangkan di berbagai pekerjaan Teknik Sipil, diantaranya pekerjaan galian, timbunan, dan berbagai fasilitas transportasi seperti jalan raya, jalur kereta api, bandara, pelabuhan, dan lainnya (Desilia Asrinia dkk, 2024).

Kriteria perencanaan lereng didasarkan pada konsep faktor keamanan lereng yang memastikan lereng harus memiliki cadangan kekuatan untuk menahan seluruh beban rencana. Dengan memiliki konsep kestabilan lereng yang baik, keruntuhan lereng secara alami maupun kegagalan desain perkuatan lereng dapat dihindari

(Sarifah, 2012). Adapun (Badan Standardisasi Nasional, 2017) memberikan nilai rujukan faktor keamanan sebagaimana disajikan dalam Tabel 2.11.

Tabel 2.11 Rekomendasi Nilai Faktor Keamanan Untuk Lereng

Kondisi Lereng	Rekomendasi Nilai Faktor Keamanan
Kondisi Permanen	1,5
Kondisi Sementara	1,3

Gaya-gaya yang bekerja pada suatu lereng terdiri dari gaya pendorong dan gaya penahan. Gaya pendorong merupakan gaya tangensial dari berat masa tanah, sedangkan gaya penahan berupa tahanan geser tanah. Analisis stabiltas suatu lereng harus dilakukan dengan memperhitungkan besarnya gaya pendorong dan gaya penahan. Namun, apabila gaya penahan lebih kecil dari gaya pendorongnya, lereng akan menjadi tidak stabil dan terjadi longsoran. (Amzeri & Anaperta, 2021). Bidang longsor

Beberapa pendekatan yang biasa diterapkan dalam menangani longsoran jalan dengan menaikkan angka faktor keamaan berdasarkan (Highway Research Board, 1958) yaitu:

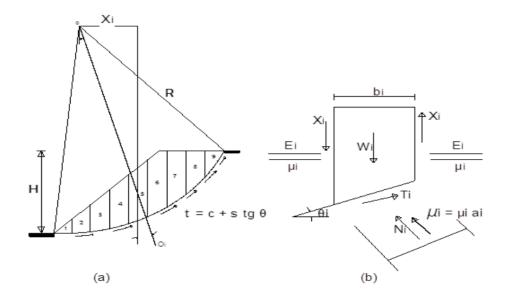
a. Menaikkan Gaya-gaya Penahan

Beberapa metode yang dapat diterapkan antara lain: subdrain untuk menaikkan kuat geser tanah menghilangkan zona-zona lemah atau bidang gelincir dengan membuat konstruksi bertangga (benching) pada permukaannya yang licin konstruksi sebagai penahan seperti tiang dinding penahan tanhah, atau timbunan pada kaki (toe) lereng; dan pemadatan material berbutir kasar.

b. Mengurangi Gaya-gaya Pendorong

Pengurangan gaya-gaya pendorong bisa dicapai dengan cara:

- Membuang material dari bagian lereng yang menyebabkan timbulnya gaya-gaya pendorong yang mengakibatkan adanya pergerakan.
- Subdrain untuk menghilangkan gaya hidrostatik dan/atau mengurangi berat massa tanah dengan pengurangan kadar air. Metode ini lebih


berpengaruh di dalam menaikkan gaya-gaya penahan dengan menaikkan kuat geser tanah dibandingkan mengurangi gaya-gaya pendorong.

- c. Menghindari atau Menghilangkan Longsoran Tanah
 - Metode- metode yang dapat dilakukan untuk pendekatan ini adalah:
 - Relokasi jalan atau struktur untuk menghindari daerah yang tidak stabil.
 - Membuang massa tanah yang mengalami kelongsoran secara keseluruhan.
 - Membuat jembatan melewati daerah yang tidak stabil.

Metode perhitungan stabilitas lereng pada umumnya terdiri dari dua metode, yaitu *Limit Equilibrium Method* (LEM) dan *Finite Element Method* (FEM). FEM merupakan metode perhitungan dengan mereduksi kuat geser tanah hingga mengalami keruntuhan, sedangkan LEM merupakan metode perhitungan stabilitas lereng yang membandingkan kondisi kesetimbangan gaya pendorong dan penahan lereng (Novia Komala Sari, Zakwan Gusnadi, 2024). Metode LEM dibagi lagi menjadi metode Fellenius (1936), Bishop (1955), Janbu (1956), Spencer (19670) dan Morgenstern-Price (1965).

2.5.1 Analisis Stabilitas Lereng Metode Bishop Disederhakanan (Bishop Simplified)

Metode Bishop Disederhanakan dikenalkan oleh A.W. Bishop tahun 1955. Metode Bishop Disederhanakan merupakan metode yang mengasumsikan bahwa gaya-gaya yang bekerja dari sisi-sisi irisan yang mempunyai resultan nol pada arah vertikal. Metode Bishop Disederhanakan mengasumsikan gaya-gaya geser yang bekerja pada bidang pertemuan antar potongan dapat diabaikan sehingga hanya gaya-gaya horizontal yang dihitung. Selain itu, pada metode ini bidang gelincir berbentuk silinder lingkaran. Dengan mengambil momen kesetimbangan keseluruhan di sekitar nol, persamaan yang menghasilkan suatu faktor keamanan dapat diperoleh. Gaya-gaya yang bekerja pada metode Bishop diilustrasikan di dalam Gambar 2.1.

Gambar 2.1 Gaya-gaya yang Bekerja pada Metode Bishop

Keterangan:

W : Berat total dari irisan

 $E_1,\,E_2$: Gaya horizontal yang bekerja dari penampang kiri dan kanan irisan

 X_1, X_r : Gaya vertikal yang bekerja di penamoang kiri dan kanan irisan

P : Gaya normal dari total irisan

T : Gaya geser dari dasar irisan

b : Lebar keseluruhan irisan

1 : Panjang keseluruhan irisan

Metode *Bishop's Simplified* memenuhi dua kondisi kesetimbangan: kesetimbangan momen keseluruhan terhadap pusat O dan kesetimbangan gaya vertikal pada setiap irisan.

Pertama, pertimbangkan keseimbangan momen total terhadap titik pusat O

$$\sum M_o = \sum_{i=1}^n W_i \sin \alpha_i - \sum_{i=1}^n T_i = 0$$
 2.1

Dengan membagi kedua sisi persamaan dengan jari-jari r, diperoleh:

$$\sum_{i=1}^{n} W_i \sin \alpha_i - \sum_{i=1}^{n} T_i = 0$$
 2.2

Jika diasumsikan bahwa faktor keamanan (F) sama untuk semua irisan, maka gaya geser yang termobilisasi pada setiap irisan (Ti) diberikan oleh persamaan:

$$T_i = \frac{c \cdot l_i + tan\varphi \cdot N_i}{F}$$
 2.3

Jumlahkan persamaan 2.6 untuk semua irisan, kemudian substitusikan hasil penjumlahan tersebut ke dalam persamaan 2.5, lalu menghasilkan persamaan:

$$F = \frac{\sum_{i=1}^{n} c' l_i + tan \varphi' N_i}{\sum_{i=1}^{n} W_i sin \alpha_i}$$
 2.4

Untuk menentukan Ni, pertimbangkan keseimbangan gaya-gaya dalam arah vertikal pada setiap irisan,

$$N_i cos \alpha_i + T_i sin \alpha_i - W_i = 0$$
 Dari 2.3

$$N_i cos \alpha_i + \frac{c' l_i + tan \varphi' N_i}{F} sin \alpha_i - W_i = 0$$
 Faktorkan Ni dan simplifikasi

$$N_i = N_i' - ul_i = \frac{W_i - \frac{c'l_i}{F} \sin \alpha_i}{\cos \alpha_i \left(1 + \frac{tan\varphi/tan\alpha_i}{F}\right)}$$
 2.5

Substitusi persamaan 2.4 dan 2.5:

$$FK = \sum_{i=1}^{10} \left(c'l_i + \tan\varphi' \left(\frac{(W_i - \frac{c'l_i \sin\alpha_i}{F})}{\cos\alpha_i (1 + \frac{\tan\varphi' \tan\alpha_i}{F})} \right) \right) x \frac{1}{\sum_{i=1}^7 W_i \sin\alpha_i}$$
 2.6

Keterangan

FK = Faktor keamanan

 ϕ = Sudut geser dalam (°)

 α = Sudut irisan dengan bidang longsor (°)

 $c = Kohesi tanah (kN/m^2)$

li = Lebar irisan ke-i (m)

Wi = Berat irisan tanah ke-i + q (kN/m)

q = Beban merata (kN/m2)

Sedangkan untuk menghitung stabilitas lereng dengan memperhitungkan beban gempa menggunakan persamaan.

$$FK = \sum_{i=1}^{10} \left(c'l_i + \tan\varphi' \left(\frac{(W_i + F_h \sin\alpha - \frac{c'l_i \sin\alpha_i)}{F}}{\cos\alpha_i (1 + \frac{\tan\varphi' \tan\alpha_i}{F})} \right) \right) x \frac{1}{\sum_{i=1}^7 W_i \sin\alpha_i + F_h \cos\alpha} \quad 2.7$$

Keterangan

SF = Faktor aman (safety factor)

 ϕ = Sudut geser dalam (°)

 α = Sudut irisan dengan bidang longsor (°)

 $c = Kohesi tanah (kN/m^2)$

 b_i = Lebar irisan ke-i (m)

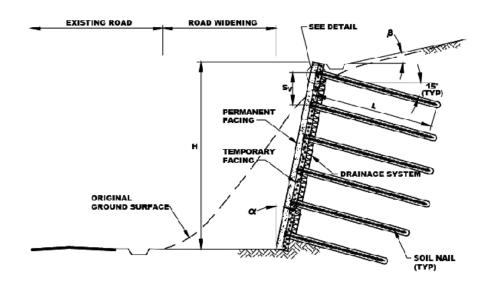
 W_i = Berat irisan tanah ke-i + q (kN/m)

Q = Beban merata (kN/m2)

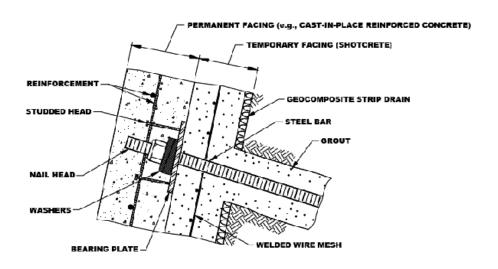
 F_h = Gaya Horizontal

 $F_h = Kh \cdot W$

 K_h = Koefisien seismik horizontal


2.6 Soil Nailing

Berdasarkan (Badan Standarisasi Nasional, 2017), *soil nailing* merupakan sistem perkuatan lereng yang bersifat pasif, artinya tanpa gaya prategang. Sistem perkuatan ini utamanya terdiri atas sejumlah *nail bar* yang dipasang di dalam tanah dengan cara dibor atau dipancang/ditekan, dan dinding muka berupa beton semprot yang diperkuat (*reinforced shotcrete*) sebagai komponen dasar dinding muka.


Nail bar dipasang dengan sudut kemirigan mendekati horizontal. Kepala nail tersambung dengan dinding muka dengan perantara bearing plate yang diletakkan di atas dinding muka dan baut pengikat sehingga tekanan tanah pada dinding muka dapat diteruskan ke nail bar (Badan Standardisasi Nasional, 2017).

Soil nailing dapat digunakan untuk stabilisasi lereng galian, baik yang bersifat sementara maupun permanen. Soil nailing juga biasa digunakan untuk stabilisasi lereng timbunan, baik untuk badan jalan raya, jalan kereta api, maupun aplikasi lainnya. aplikasi lainnya dari soil nailing adalah memperkuat dinding penahan tanah eksisting.

Berikut merupakan gambar potongan tipikal dinding *soil nailing* dan detail sekitar kepala *nail* yang bersumber dari FHWA-IF-03-017 disajikan di dalam Gambar 2.2 dan Gambar 2.3.

Gambar 2.2 Potongan Tipikal Dinding Soil Nailing

Gambar 2.3 Detail Sekitar Kepala Nail

2.6.1 Jenis Soil Nailing

Soil nailing adalah sebuah teknik dimana talud, daerah galian atau dinding penahan tanah secara pasif diperkuat oleh penyisipan elemen yang relatif ramping, biasanya berbentuk seperti baja tulangan. Soil nail biasanya dipasang dengan sudut

2 derajat terhadap sisi horizontal dan berfungsi menahan tegangan tarik. *Soil nailing* biasanya digunakan untuk menstabilkan lereng asli atau galian dimana konstruksi *top-to-bottom* lebih menguntungan dibandingan dengan jenis dinding penahan yang lain (Prashant dan Mukerjee, 2010). Berbagai jenis metode *soil nailing* yang digunakan di lapangan adalah sebagai berikut:

1. Grouted Nail

Setelah penggalian, dilakukan pengeboran untuk membuat lubang pada lereng kemudian nail dimasukkan ke dalam lubang. Setelah itu lubang diisi dengan pasta semen.

2. Driven Nail

Pada tipe ini, nails secara mekanis didorong ke dalam lereng saat penggalian. Pemasangan dengan metode ini sangat cepat dilakukan, namun metode ini tidak melindungi nail dari korosi. Metode ini umumnya digunakan untuk penahan tanah sementara.

3. Self-drilling Soil Nail

Nail berngga didorong dan grout dimasukkan melalui nail berongga secara bersamaan selama pengeboran. Metode ini lebih cepat daripada grouted nail dan memiliki perlindungan terhadap korosi yang lebih baik dibandingkan dengan driven nail.

4. Launched Soil Nail

Batangan baja ditembakkan ke tanah dengan kecepatan sangat tinggi menggunakan mesin dengan kecepatan sangat tinggi menggunakan mesin penembak metode ini sangat cepat dalam pelaksanaannya namun sulit untuk melakukan pengontrolan panjang baja yang telah masuk kedalam tanah.

2.6.2 Persyaratan Teknis Soil Nailing

Berikut merupakan persyaratan teknis *soil nailing* yang meliputi nilai-nilai tipikal komponen dinding *soil nailing*, persyaratan material komponen dinding *soil nailing*, dan persyaratan tanah untuk *soil nailing* mengacu kepada (Badan Standarisasi Nasional, 2017).

2.6.2.1 Nilai-nilai Tipikal Komponen Dinding Soil Nailing

a. Kemiringan Dinding

Kemiringan dinding akan memperpendek kebutuhan panjang *nail bar*. Kemiringan 10% dari vertikal (80% terhadap bidang horizontal) mengurangi kebutuhan panjang *nail bar* 10% - 15% dibandingkan dinding yang tegak. Kemiringan tipikal dinding *soil nailing* berkisar antara 80° sampai dengan 90° terhadap bidang horizontal.

b. Kemiringan Nail

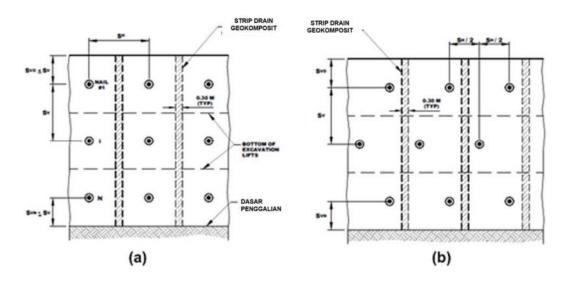
Kemiringan tipikal *nail bar* berkisar antara 10° sampai dengan 20° di bawah bidang horizontal. Kemiringan *nail bar* < 10° harus dihindari karena akan menyebabkan terbentuknya pori (*void*) di dalam *grout*, yang akan mengurangi kapasitas tarik nail dan menurunkan proteksi terhadap korosi. Sebaliknya, kemiringan *nail bar* yang besar menyebabkan nail tidak efektif menahan gaya lateral.

c. Panjang Nail Bar

Panjang tipikal *nail bar* berkisar antara 0,6H sampai dengan 1,2H dimana H adalah kedalaman galian atau tinggi timbunan. Jarang dijumpai panjang *nail bar* < 0,6H karena biasanya tidak memenuhi stabilitas terhadap *sliding*. Sebaliknya, hasil analisis yang memberikan hasil panjang *nail bar* > 1,2H menunjukkan bahwa tanah pada lokasi *site* tidak cocok atau terlalu lunak untuk *soil nailing*.

d. Jarak Antar Nail Bar

Nail bar biasanya dipasang mengikuti pola *grid*. Jarak atau spasi horizontal dan vertikal biasanya sama. Tipikal spasi *nail bar* adalah 1.5 m untuk *drilled* dan *grouted soil nailing* dan 1 m – 1,2 m untuk *driven soil nailing*. Nail bar baris pertama harus dipasang tidak lebih dalam dari 1,1 m di bawah puncak dinding untuk mengurangi potesi longsor pada bagian awal tahapan galian dan mengurangi efek kantilever pada dinding.


e. Diameter Lubang Bor

Diameter lubang bor untuk *drilled and grout soil nailing* bervariasi dari 100 m sampai dengan 200 mm.

2.6.2.2 Persyaratan Material Komponen Dinding Soil Nailing

Persyaratan material komponen dinding *soil nailing* berdasarkan (Badan Standarisasi Nasional, 2017) yang harus dipenuhi yaitu:

a. *Nail bar* menggunakan *deformed bar* dengan mutu BJTD 40 (*yield strength* 400 Mpa) dengan diameter ≥ 25 mm. *Nail bar* dapat dipasang mengikuti pola segi empat atau pola segitiga. Gambar pola pemasangan *nail bar* segi empat dan segitiga yang bersumber dari FHWA-NHI-14-007 disajikan di dalam Gambar 2.4.

Gambar 2.4 Pola Pemasangan Nail Bar Segi Empat dan Segitiga

b. Bearing Plate

Bearing plate terbuat dari pelat baja berukuran tipikal 200 mm x 200 mm sampai dengan 250 mm x 250 mm dengan tebal 19 mm.

c. Grout

Material grout dibuat dari semen tipe 1, dengan tipikal rasio air/semen (w/c ratio) 0.4 – 0.5. Persyaratan kuat tekan *grout* dalam 28 hari adalah 21 Mpa. Bahan tambah umumnya tidak digunakan kecuali *plasticizer* untuk memperbaiki *workability*.

d. Beton Semprot Dinding Muka

Beton semprot atau *shotcrete* dinding muka mempunyai tebal tipikal 75 mm − 100 mm, dilengkapi dengan 1 lapis wiremesh M6 (ukuran 6 mm). Beton semprot disyaratkan mempunyai kuat tekan fc' ≥ 18 Mpa. Beton semprot yang diperkuat ini merupakan komponen dasar dinding muka. Komponen akhir dinding muka dipasang di atas beton semprot, berupa panel beton pracetak, beton cast in place, dan beton semprot yang diperkuat. Komponen

akhir dinding muka ini memberikan aspek keindahan bagi tampak muka dinding soil nailing.

2.6.2.3 Persyaratan Tanah untuk Soil Nailing

a. Persyaratan Umum

Tanah untuk *soil nailing* harus dapat berdiri vertikal tanpa penyangga setinggi 1-2 m, selama 1-2 hari untuk memberikan kesempatan pemasangan *nail* dan penyemprotan beton semprot.

b. Persyaratan untuk Tanah Kohesif

Tanah kohesif dengan konsistensi *medium stiff* dengan NSPT ≥ 5 , umumnya memenuhi persyaratan yang disebutkan persyaratan umum.

c. Persyaratan untuk Tanah Pasir

Tanah pasir yang cocok adalah pasir dengan kepadatan medium dense, dengan N SPT ≥ 10 , yang menunjukkan adanya kohesi *apparent* atau sementasi natural.

d. Tanah yang Tidak Cocok untuk Soil Nailing

Tanah yang tidak cocok untuk *soil nailing* adalah tanah-tanah dengan kondisi sebagai berikut:

- Tanah-tanah yang tidak memenuhi persyaratan yang disebutkan pada persyaratan c dan d;
- Tanah organik;
- Tanah yang mengandung batu bongkah dan batu bulat (*cobbles*);
- Tanah dengan air tanah yang korosif.

e. Pengaruh Tinggi Muka Air Tanah

Semakin tinggi permukaan air tanah semakin sulit pengerjaan soil nailing. Selain itu, pada masa umur layan dinding muka tidak boleh menerima tekanan air tanah, karena pada umumnya dinding ini tidak dirancang untuk menahan tekanan air tanah. Jika dipaksakan, harus disediakan sistem drainase yang komprehensif.

2.6.3 Metode Pemasangan Soil Nailing

Pemasangan *soil nailing* harus dilakukan secara berkelanjutan dan sesuai ketentuan yang berlaku. Tahapan metode pelaksanaannya adalah sebagai berikut:

1. Pengeboran

Pengeboran dilakukan dengan dengan sistem *wash boring*, yaitu metode pengeboran tanah yang menggunakan injeksi air bertekanan untuk membantu memecah dan mengangkat material tanah dari lubang bor.

2. Flushing

Setelah pengeboran selesai, lubang bor dicuci sehingga diharapkan semua lumpur sisa pengeboran keluar dari lubang bor. Pencucian dilakukan dengan memompakan air ke dalam lubang bor melalui tremie berupa pipa PVC Ø ¾" atau 1".

3. Pemasukan Nail bar

Setelah lubang bor bersih dari lumpur, *nail bar* dimasukkan ke dalam lubang bor. Untuk menjaga posisi *nail bar* pada tengah-tengah lubang, pada beberapa tempat sepanjang deform bar dibuatkan dan dipasang *centralizer*.

4. Grouting

Grouting dilaksanakan setelah *nail bar* selesai diinstal ke dalam lubang pengeboran. Material *grouting* dialirkan dari ujung terbawah lubang, kemudian naik hingga material *grouting* memenuhi lubang pengeboran.

5. Shotcrete

Pekerjaan *shotcrete* dilakukan untuk menyatukan seluruh *soil nailing* agar menjadi satu kesatuan.

6. Finishing

Tahapan terakhir setelah *shotcrete* dilaksanakan adalah pemasangan plat penguat serta pengencangan baut pada ujung *nail bar*.

2.7 Program Berbasis Kesetimbangan Batas (LEM)

Program berbasis kesetimbangan batas yang digunakan dalam penelitian yaitu Rocscience Slide 6.0. Rocscience Slide 6.0 adalah suatu perogram perangkat lunak geoteknik yang mempunyai spesialisasi sebagai *software* perhitungan kestabilan lereng. Rocscience Slide 6.0 memiliki kemampuan analisis probablistik yang luas yang bisa menetapkan distribusi statistik ke hampir semua parameter masukan, termasuk properti material, properti pendukung, beban dan lokasi meja

48

air. Probablitas indeks kegagalan/reliabilitas dihitung dan memberikan ukuran

objektif dan risiko kegagalan yang terkait dengan desain kemiringan. Analisis

sensitivitas memungkinkan untuk menentukan pengaruh variabel individu terhadap

faktor keamanan kemiringan. (Amzeri & Anaperta, 2021)

Perangkat lunak Rocscience Slides banyak digunakan di bidang

pertambangan karena perhitungannya lebih kompleks. Beberapa pekerjaan yang

memerlukan analisis Rocsience Slides antara lain:

a. Stabilitas lereng

b. Tanggul/Embankment

c. Terowongan

d. Jalan, dll

2.7.1 Analisis Stabilitas Lereng dengan Program Berbasis Kesetimbangan

Batas

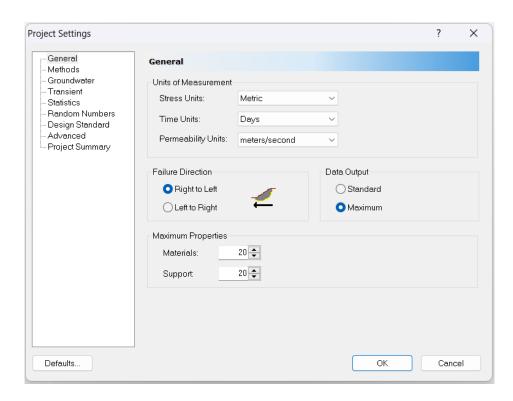
Berikut merupakan tahapan-tahapan analisis stabilitas lereng dengan

program Rocscience Slide 6.0 dapat dilihat pada Buka Aplikasi Slide 6.0

1) Klik analysis pada toolbar

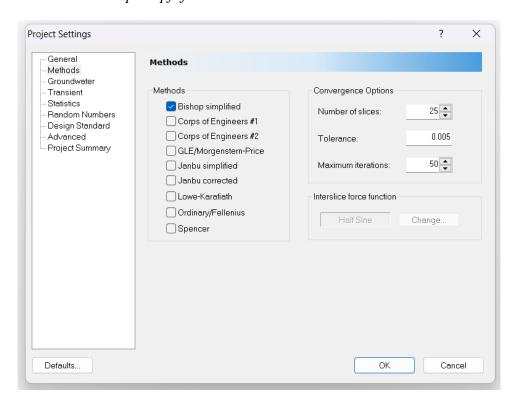
2) Pilih project settings

• Klik general


Stress units : Metric : Days

Time units : Days

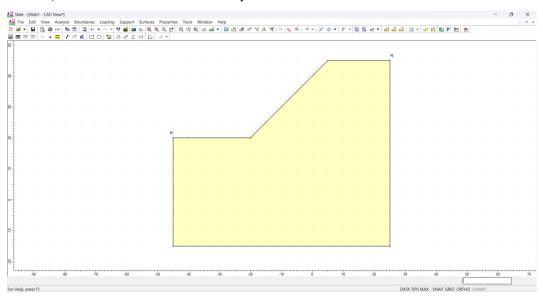
Permeability : Meters/second


Failure : Right to left

Data output : Maximum

Gambar 2.5 Pengaturan Umum pada Program LEM

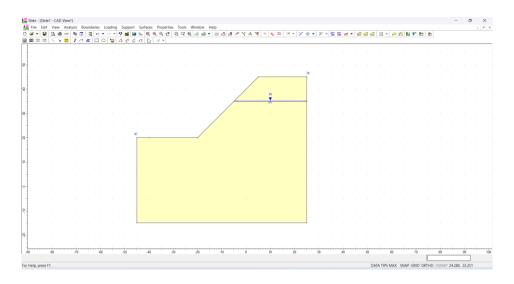
- Klik Methods
- ✓ Bishop simpflified



Gambar 2.6 Metode pada Program LEM

- Groundwater : next
- Transient : next
- Random numbers : next
- Design standars : next
- Advanced : next
- Project summary : next
- Klik OK

1. Memasukkan Angka Jenjang


- 1) Klik boundaries pada toolbar
- 2) Pilih Add external boundary

Gambar 2.7 Pemodelan Lereng pada Program LEM

2. Membuat Permukaan Air Tanah

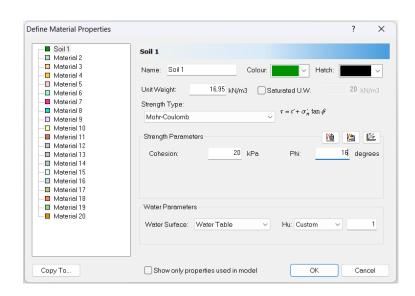
- 1) Klik boundaries pada toolbar
- 2) Pilih Add water table
- 3) Tekan *enter* 2x pada *keyboard*, maka akan muncul kotak dialog *assign* water table to materials. Lalu klik ok.

Gambar 2.8 Muka Air Tanah pada Program LEM

3. Membuat Material Properties

1) Klik properties pada toolbar

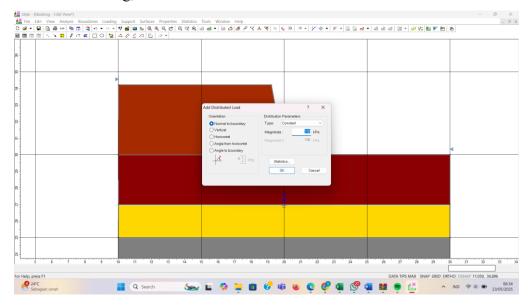
2) Pilih define material


Material 1

: Soil 1 Name Green Colour

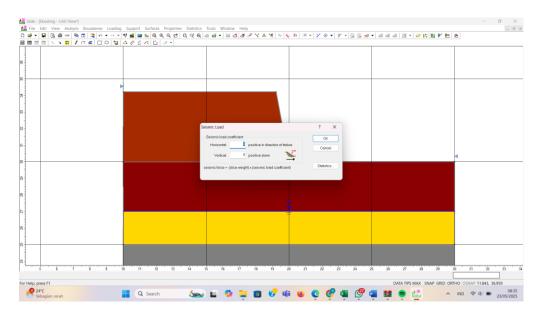
Masukkan nilai unit weight lapisan tanah Unit weight

Masukkan nilai kohesi lapisan tanah 1 Kohesion


Masukkan nilai sudut lapisan tanah 1 Phi

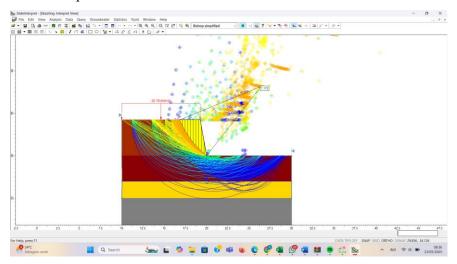
Gambar 2.9 Input Parameter Tanah pada Program LEM

4. Input beban di atas lereng


klik menu loading, lalu add distributed load. Masukkan beban.

Gambar 2.10 Input Beban Merata pada Progam LEM

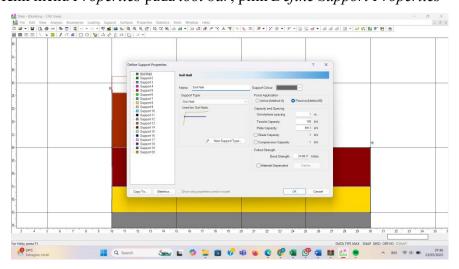
5. Input beban gempa


Klik menu loading, lalu klik seismic load, masukkan koefisien beban gempa horizontal dan vertikal.

Gambar 2.11 Input Beban Gempa pada Program LEM

6. Mengetahui Nilai Faktor Keamanan

- 1) Klik analysis di toolbar
- 2) Pilih compute, ganti nama file dan save
- 3) Setelah selesai tercompute, klik analysis lagi pada toolbar
- 4) Pilih Interpret



Gambar 2.12 Faktor Keamanan pada Program LEM

2.7.2 Analisis Stabilitas Lereng Menggunakan *Soil Nailing* dengan Program Berbasis Kesetimbangan Batas

Analisis stabilitas lereng menggunakan *soil nailing* dengan program berbasis kesetimbangan batas dengan langkah-langkah sebagai berikut:

1. Klik menu Properties pada tool bar, pilih Define Support Properties

Gambar 2.13 Input Soil Nail pada Program LEM

Define Support Properties

Support Type : Soil Nail

Force Application : Passive

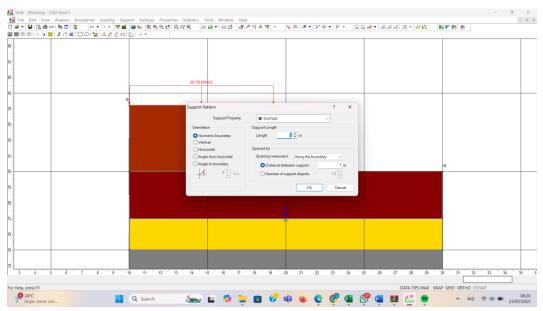
Out of plane spacing : Jarak antar nail bar arah z.

Tensile Capacity : A x fy

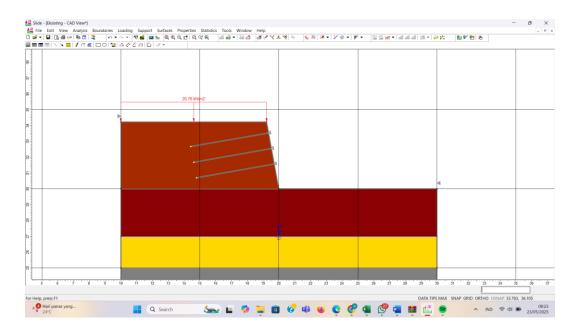
1 : Luas penampang nail bar

fy: Kuat leleh baja

Bond Strength : π Ca D Lp

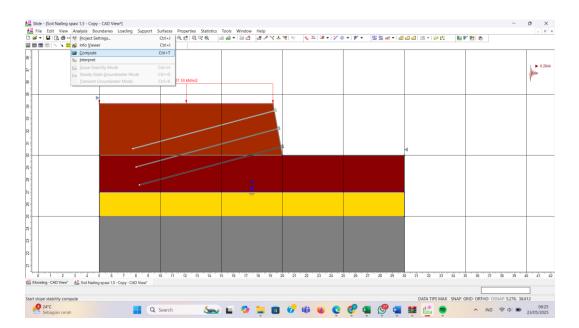

<u>Ca</u>: Tahanan geser anara grout dan tanah

D: Diameter lubang bor


Lp : Panjang zona pasif

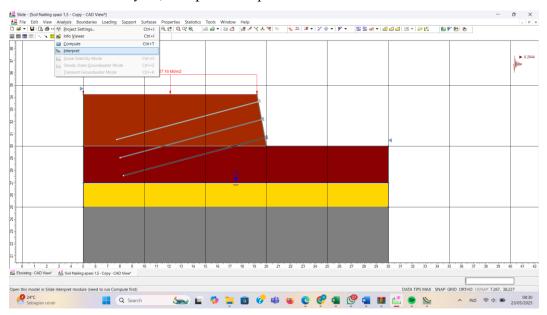
2. Klik menu support pada toolbar

Tentukan panjang, kemiringan, dan jarak antar *nail bar*. Lalu aplikasikan terhadap pemodelan lereng.


Gambar 2.14 Parameter Soil Nail pada Program LEM

Gambar 2.15 Pemodelan Soil Nail pada Program LEM

3. Compute


Klik menu Analysis, lalu pilih compute.

Gambar 2.16 Compute Soil Nail pada Program LEM

4. Interpret

Klik menu Analysis, lalu pilih interpret.

Gambar 2.17 Interpret Soil Nail pada Program LEM

5. Didapatkan nilai FK

Gambar 2.18 Faktor Keamanan Lereng Setelah Menggunakan Soil Nail pada Program LEM