BAB II

LANDASAN TEORI

2.1. Fast-Moving Consumer Goods (FMCG)

Fast-Moving Consumer Goods (FMCG) adalah produk-produk yang dapat terjual secara cepat dengan harga yang murah, biasanya merupakan kebutuhan sehari-hari, sebagai contoh yaitu seperti minuman dan makanan ringan, produk perawatan tubuh, atau barang kelontong (Ar & Kurniawan, 2021). Kategori ini terutama makanan dan minuman dipilih karena sering dibeli dan umum ditemukan di pasar, ritel, minimarket, dan supermarket. Selain itu, secara tampilan memiliki ciri visual yang mudah dipelajari model, sehingga banyak dataset barang ritel jenis ini beredar dan digunakan pada penelitian.

2.2. Self Checkout System

Sesuai dengan namanya, *self checkout system* adalah pendekatan modern dalam proses pembayaran toko yang memungkinkan pelanggan untuk memindai dan membayar barang secara mandiri tanpa bantuan kasir. Dengan pendekatan ini, proses transaksi menjadi lebih cepat dibanding metode konvensional, di mana kasir harus memindai setiap barang secara manual, dan mengakibatkan antrian panjang yang sering menjadi tantangan besar di toko ritel (Gazzola dkk., 2022). Menurut (Hamir dkk., 2024), contoh keberhasilan yang didapatkan dengan penerapan sistem checkout otomatis adalah pada kasus Amazon Go. Mereka menghapus keperluan konter pembayaran

konvensional dengan menggantinya menggunakan sistem yang terintegrasi computer vision dan sensor fusi, nantinya ketika pembeli keluar dari toko, semua barang yang sudah dibeli secara otomatis muncul pada tagihan di dalam aplikasi, terbukti efektif menghilangkan antrian dan mengurangi waktu checkout dan pembayaran.

2.3. Deep Learning

Deep learning atau pembelajaran mendalam merupakan salah satu cabang dari lingkungan machine learning atau pembelajaran mesin yang menggunakan abstraksi pemodelan tingkat tinggi untuk mempelajari representasi data dengan serangkaian fungsi non-linier (Zahir & Adi Saputra, 2024).

2.4. Transfer Learning

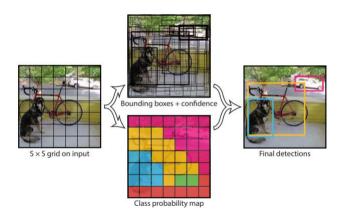
Transfer learning merupakan salah satu pendekatan dari deep learning dengan memanfaatkan model jaringan saraf yang telah dilatih sebelumnya dan digunakan sebagai awalan untuk mempelajari tugas atau masalah yang beda (Faturrahman dkk., 2023).

2.5. You Only Look Once (YOLO)

You Only Look Once atau populernya disingkat YOLO merupakan pendekatan dalam pendeteksian objek dengan memisahkan spasial bounding box dan probabilitas kelas (Andaru, Imam, 2024). Model YOLO merupakan one-stage detection yang deteksinya langsung melakukan deteksi objek (termasuk klasifikasi dan bounding box) dalam satu langkah (Redmon &

Farhadi, 2017). Metode *one-stage detection* secara general mempunyai kecepatan yang jauh lebih tinggi daripada *two-stage detection* sehingga membuatnya lebih sesuai untuk kasus *real-time detection* (Oh dkk., 2022).

Pada penelitian ini menggunakan *pre-trained model* YOLO, sehingga termasuk ke dalam kategori *Transfer Learning. Pre-trained model* YOLO menggunakan jaringan saraf yang sudah dilatih dengan dataset besar seperti ImageNet, COCO, dan VOC sehingga jaringan konvolusi di dalamnya sudah mempunyai kemampuan yang tinggi dalam mempelajari fitur informasi dalam data citra (Situ dkk., 2023).



Gambar 2.5.1 Proses Deteksi YOLO

Sumber: (Redmon dkk., 2016)

Pada jaringan YOLO pemrosesan gambar bisa dilihat pada Gambar 2.5.1, input gambar diproses menjadi grid berukuran S x S, setiap grid memprediksi kotak pembatas dan menghasilkan skor kepercayaan (*Confidence Score*) pada masing-masing kotak tersebut yang nantinya skor ini mencerminkan seberapa yakin model bahwa area kotak tersebut berisi objek dan seberapa akurat kotak tersebut diprediksi (Redmon dkk., 2016). Pada prosesnya, model YOLO

II-11

menggunakan metode Intersection over Union (IoU) dalam menghasilkan nilai

kepercayaannya, digunakan perhitungan dengan Persamaan (2.1).

$$IoU(A,B) = \frac{A \cap B}{A \cup B}; IoU(A,B) \in [0,1]$$
 (2.1)

Keterangan:

IoU (A, B): Fungsi Intersection over Union untuk gambar prediksi dan label

A : Prediksi

B : Label

Pada model YOLO juga terdapat ambang batas (*Threshold*) IoU, sebagai patokan apakah deteksi objek berhasil atau tidak, jika skor kepercayaan

melebihi ambang batas, maka deteksi dianggap berhasil. Selain itu ambang

batas meminimalisir multi bounding box dan mengambil box dengan nilai IoU

yang terbesar untuk ditampilkan (Redmon dkk., 2016).

Masing-masing kelas objek dihitung rata-rata akurasinya (Average

Precision) dengan Persamaan (2.2).

$$AP = \frac{TP}{TP + FP} \quad (2.2)$$

Keterangan:

AP: Average Precision

TP: True Positive

FP: False Positive

True Positive adalah jumlah prediksi positif dan False Positive adalah

jumlah prediksi yang dianggap positif namun sebenarnya negatif. Jika AP = 1

artinya tingkat deteksi sempurna, sedangkan jika AP = 0 maka hasil deteksinya

buruk (Andaru, Imam, 2024). Pada keseluruhannya, proses evaluasi

II-12

keseluruhan Average Precision atas semua objek dalam dataset menggunakan

metrik mean average precision (mAP) dengan Persamaan (2.3)

$$mAP = \frac{1}{n} \sum_{k=1}^{k=n} AP_k$$
 (2.3)

Keterangan:

mAP: Rata-rata dari Average Precision

k : Jumlah kelas

 AP_k : Average Precision untuk kelas k

Perusahaan Ultralytics selaku pembuat dari model YOLOv5 dan YOLOv8

telah mengeluarkan versi YOLO terbarunya di bulan September 2024, yaitu

YOLOv11. Pada dokumentasi resminya, mereka mengklaim bahwa versi ini

jauh lebih baik daripada versi-versi YOLO sebelumnya, baik dari segi

kecepatan, efisiensi, akurasi, dan parameter model yang lebih sedikit yang

membuat ukurannya lebih kecil serte fleksibel untuk di deploy pada berbagai

lingkungan pengembangan (Ultralytics, 2024).

2.6. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) adalah salah satu algoritma jaringan

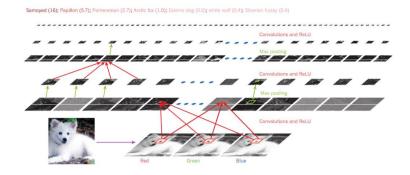
saraf tiruan yang umum digunakan untuk klasifikasi gambar (Winiarti dkk.,

2022). Proses konvolusi ini digunakan dalam arsitektur YOLO, diterapkan

secara berulang melalui beberapa laporan konvolusi untuk mendeteksi pola-

pola penting pada gambar, selain itu CNN juga dipakai untuk memprediksi

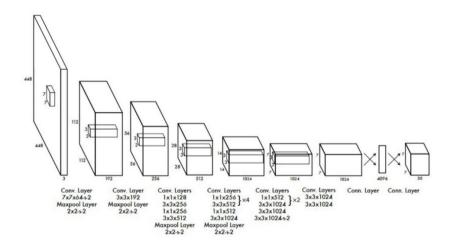
bounding box dan probabilitas kelas objek secara langsung (Diwan dkk., 2023).



Gambar 2.6.1 Proses Konvolusi

Sumber: (Lecun dkk., 2015)

Proses konvolusi divisualisasikan pada Gambar 2.6.1, menurut Lecun dkk., (2015) CNN memecah gambar menjadi patch kecil dengan filter lalu mendeteksi pola dengan lapisan yang berlapis-lapis di dalamnya. Lapisan awal berfungsi untuk mendeteksi pola sederhana, seperti tepi atau garis. Lapisan tengah mendeteksi kombinasi dari pola-pola sederhana seperti sudut atau tekstur, dan lapisan akhir menggabungkan pola-pola kompleks untuk mendeteksi objek secara lengkap.



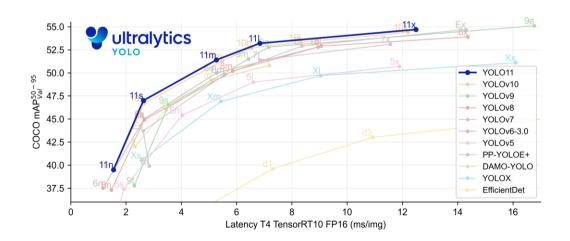
Gambar 2.6.2 Lapisan Konvolusi pada YOLO

Sumber: (Redmon dkk., 2016)

CNN digunakan berlapis-lapis pada YOLO seperti pada Gambar 2.6.2, dimana CNN pada YOLO langsung belajar untuk menghubungkan fitur citra dengan keluaran yang dibutuhkan, memungkinkan YOLO untuk memproses seluruh gambar dalam satu kali deteksi melalui arsitektur jaringan di dalamnya, sehingga membuatnya cepat dalam mendeteksi objek dan cocok untuk penggunaan *real-time*.

2.7. YOLOv11

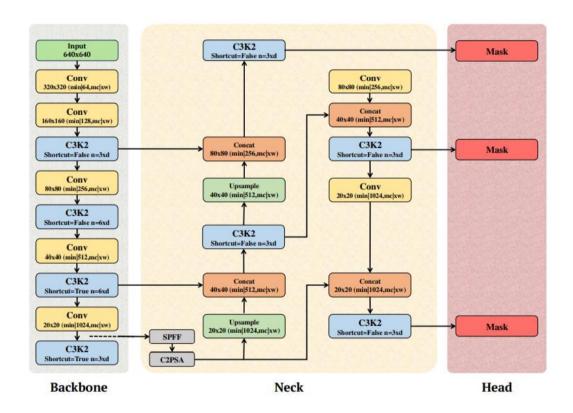
YOLOv11 merupakan versi terbaru dari seri YOLO yang dikeluarkan oleh perusahaan Ultralytics yang membuat YOLOv5 dan YOLOv8, versi terbaik yang banyak digunakan sebelumnya. Pada dokumentasi resminya, YOLOv11 ini menunjukkan banyak peningkatan sehingga lebih baik dari segi akurasi, kecepatan dan efisiensinya (Ultralytics, 2024).



Gambar 2.7.1 Perbandingan Benchmark YOLOv11 dengan versi sebelumnya

Sumber: (Ultralytics, 2024)

Berdasarkan Gambar 2.7.1, hasil perbandingan akurasi model YOLO dengan waktu inferensi menggunakan akselerator AI TensorRT10 menunjukkan bahwa grafik YOLOv11 berada di posisi teratas dibandingkan YOLO lainnya. Hal ini mengindikasikan bahwa YOLOv11 memiliki keunggulan baik dari segi kecepatan inferensi maupun akurasi dibandingkan versi pendahulunya.

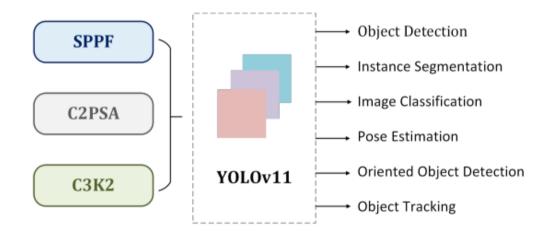


Gambar 2.7.2 Arsitektur YOLOv11

Sumber: (Khan & Jensen, 2024)

Arsitektur YOLOv11 secara keseluruhan bisa dilihat pada Gambar 2.7.2, disana disajikan diagram skema yang menggambarkan tiga komponen inti dari YOLOv11. Menurut Khan & Jensen, (2024), arsitektur YOLOv11 memiliki beberapa komponen yaitu *Backbone*, *Neck* dan *Head*. *Backbone* menangani

ekstraksi fitur *multi-scale* dengan blok tingkat lanjut seperti C3K2 dan *Spatial Pyramid Pooling Fast* (SPPF) yang dirancang untuk representasi fitur yang efisien. Bagian *Neck* menyempurnakan fitur ini dengan mekanisme tambahan seperti *Cross-Stage Partial with Attention* (C2PSA). Terakhir, Head memprediksi *bounding box* dari objek, *mask*, dan klasifikasinya dengan *multi-scale processing* yang ditingkatkan.



Gambar 2.7.3 Blok Penting dari YOLOv11 dan Fungsinya

Sumber: (Khanam & Hussain, 2024)

Menurut (Khanam & Hussain, 2024) YOLOv11 mempertahankan struktur yang serupa dengan pendahulunya, dengan memanfaatkan lapisan konvolusi awal yang membentuk dasar dari proses ekstraksi fitur, yang secara bertahap mengurangi dimensi spasial. Peningkatan yang dilakukan YOLOv11 adalah seperti pada Gambar 2.7.3, yaitu penggantian blok C2F yang digunakan pada versi sebelumnya untuk *upsampling* dan *concatenation*. Blok C3K2 lebih efisien secara komputasi. Tanda K2 di C3K2 menunjukkan ukuran *kernel* yang lebih kecil, sehingga berkotribusi lebih cepat dalam pemrosesan dengan

mempertahankan kinerja. Selain itu, pada YOLOv11 ditambahkan blok untuk attention mechanism dengan C2PSA, blok ini memungkinkan model untuk konsentrasi pada area gambar objek yang membuatnya lebih akurat dalam mendeteksi objek dibanding dengan YOLOv8 yang lebih lemah dalam attention mechanism.

2.8. Hyperparameter

Hyperparameter adalah nilai-nilai parameter yang ditetapkan sebelum proses pembelajaran dimulai untuk meningkatkan kualitas deteksinya sesuai dengan model yang dipakai sehingga konfigurasinya memiliki dampak yang signifikan pada kinerja dan model yang dihasilkan (T. A. E. Putri dkk., 2023). Menurut (Chhabra & Goyal, 2024) konfigurasi Hyperparameter dibutuhkan pada kasus ini dimana objek ritel seringkali berukuran kecil atau bentuk dan rupa yang mirip antara satu produk dengan produk lainnya sehingga model harus mempelajari secara lebih detail dari masing-masing citra objek agar mendeteksi secara akurat

2.9. Optimizer

Optimizer adalah algoritma atau metode dalam kecerdasan buatan untuk menyesuaikan parameter seperti bobot dan bias, dengan tujuan mengurangi fungsi kerugian atau memfasilitasi perubahan nilai bobot dan penyesuaian laju pelatihan dalam jaringan saraf agar kerugian dapat diminimalkan (Ayu & Pradipta, 2022). Optimizer ini termasuk ke dalam hyperparameter yang dapat

disesuaikan nilainya sebelum menjalankan proses pelatihan pelatihan ulang (fine-tuning).

2.10. Adam Weight Decay

Optimizer AdamW adalah variasi dari optimizer Adam yang memperkenalkan teknik weight decay secara lebih eksplisit dalam proses optimasi dan memodifikasi Adam dengan memisahkan weight decay dari proses update parameter (Mahajaya dkk., 2024). Formula yang dipakai tertera pada Persamaan 2.4.

$$\theta_{t+1} = \theta_t - \frac{\alpha \cdot \hat{m}_t}{\sqrt{\hat{v}_t + \epsilon}} - \alpha \omega d \theta_t$$
 (2.4)

Keterangan:

 θ_t : Parameter model pada iterasi ke-t

 α : Learning rate

 \widehat{m}_t : Estimasi bias-corrected dari momentum (mean dari gradien)

 \hat{v}_t : Estimasi bias-corrected dari second momentum (varians gradien)

€ : Bilangan kecil untuk mencegah pembagian dengan nol

 ω : Koefisien weight decay (konstanta regularisasi)

 $\alpha \ \omega d \ \theta_t$: Bagian decoupled weight decay dari AdamW

2.11. Mixup Augmentation

Mixup Augmentation merupakan salah satu teknik augmentasi data dengan memadukan dua gambar dan labelnya ke dalam satu gambar, Teknik ini membuat model lebih tahan terhadap variasi data yang tidak terduga atau noise

(Zhang dkk., 2021). Augmentasi data juga termasuk ke dalam *hyperparameter* yang dapat ditambahkan sebelum proses pelatihan ulang (*fine-tuning*).

2.12. Open Neural Network Exchange (ONNX)

Open Neural Network Exchange (ONNX) adalah format standar yang dirancang untuk mempresentasikan model machine learning dalam bentuk graf yang menampilkan langkah-langkah proses komputasi secara matematis, format ini mendefinisikan semua operasi yang diperlukan model, termasuk transformasi fitur menjadi prediksi, sehingga memungkinkan modelnya digunakan pada lintas framework dan platform (ONNX, 2024). Pada library ONNX juga terdapat fitur untuk kuantisasi model, banyak opsi kuantisasi yang disediakan di dalamnya sehingga sangat mudah untuk dilakukan.

2.13. Kuantisasi Model

Kuantisasi model merupakan salah satu cara yang dapat dilakukan untuk mengurangi waktu inferensi saat menggunakan jaringan saraf, dengan mengubah format data yang diproses ke bentuk bit yang lebih rendah agar lebih mudah diproses oleh mesin (Nagel dkk., 2021). Contohnya pada penelitian ini mengubah pemrosesan data model dari Float 16 (FP16) (default YOLOv11) ke Integer 8 (INT8) Namun, kuantisasi model memiliki kekurangan, karena memperbanyak *noise* atau *bias* ke dalam jaringan sarafnya yang dapat menyebabkan penurunan akurasi, walaupun beberapa jaringan tangguh pada pengaruh noise atau bias (Andaru, Imam, 2024).

Terdapat dua jenis metode kuantisasi, yaitu kuantisasi statis dan kuantisasi dinamis. Menurut dokumentasi resmi dari (ONNX, 2024), kuantisasi dinamis menghitung parameter kuantisasi, seperti *scale* dan *zero point*, secara *real-time* selama inferensi, sehingga mengurangi waktu inferensi dan mempertahankan akurasi yang lebih tinggi sekaligus dalam satu waktu dibandingkan dengan kuantisasi statis. Sebaliknya, kuantisasi statis menghitung parameter kuantisasi di awal dengan menggunakan data kalibrasi untuk *scale* dan *zero point* nya, lalu parameter tersebut disimpan untuk semua proses inferensi. Kuantisasi statis cocok untuk kasus yang membutuhkan optimasi kecepatan inferensi secara maksimum, meskipun akurasinya lebih rendah.

Secara default, ONNX Runtime menggunakan *asymmetric quantization* untuk kuantisasi bertipe dinamis.

$$zero\ point = round\left(-\frac{data_range_min}{scale}\right) + quantization_range_min\ (2.5)$$

$$scale = \frac{data_range_max - data_range_min}{quantization_range_max - quantization_range_min}\ (2.6)$$

$$val_{quantized} = round\left(\frac{val_{fp16} - zero\ point}{scale}\right)\ (2.7)$$

Perhitungan asymmetric quantization menggunakan Persamaan (2.5), (2.6), dan (2.7) karena menggunakan kuantisasi dinamis, maka nilai zero point dan scale ditentukan secara dinamis oleh ONNX Runtime dengan melihat distribusi angka pada dataset yang diproses untuk ditetapkan sebagai data_range_max dan data_range_min. Selain itu, dikarenakan kasus pada penelitian ini menggunakan gambar, dan YOLO memproses gambar secara RGB, maka tipe kuantisasi yang dipakai adalah unsigned INT8 atau UINT8. UINT8 memiliki

rentang angka dari 0 sampai 255 sehingga cocok dipakai untuk mengolah data gambar RGB yang nilainya tidak ada negatif karena sama-sama memiliki rentang secara integer dari 0 sampai 255 (Pérez-Delgado & Celebi, 2024).

Pada penelitian ini menggunakan metode *Post-Training Quantization* (PTQ) daripada menggunakan *Quantization-Aware Training* (QAT). PTQ lebih mendukung untuk deployment cepat dan ringan daripada QAT yang membutuhkan waktu dan sumber daya lebih untuk melakukan proses pelatihan ulang untuk mengubah arsitektur model secara keseluruhan, sehingga lebih membebani perangkat keras (Zhao dkk., 2023).

2.14. Confusion Matrix

Confusion Matrix adalah metode evaluasi yang digunakan untuk menilai kinerja model deep learning dalam pengklasifikasian objek dengan menunjukkan perbandingan prediksi model dan data asli yang digunakan dalam pengujian (Nur dkk., 2024). Confusion Matrix memiliki beberapa artibut yaitu True Positive (TP), True Negative (TN), False Positive (FP), dan False Negative (FN). Metode ini memungkinkan perhitungan berbagai metrik evalusasi seperti akurasi, precision, recall, dan F1-score sehingga memberikan gambaran mendalam terkait performa klasifikasi pada dataset tertentu (Cahyanti dkk., 2020) (Novita dkk., 2021). Gambaran dari metode Confusion Matrix bisa dilihat pada Tabel 2.14.1 berikut.

Prediction

Positive Negative

Actual Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Tabel 2.14.1 Confusion Matrix

True Negative merupakan nilai hasil dari banyak data yang tepat dengan output salah. True Positive adalah banyak data yang berhasil diprediksi sesuai labelnya. False Positive adalah banyak data hasil prediksi yang salah diidentifikasi sebagai benar. Dan False Negative adalah banyak data yang dikategorikan negatif atau salah (N. H. Putri dkk., 2023). Formula yang digunakan dalam perhitungan Confusion Matrix terdapat pada Persamaan (2.7), (2.8), (2.9) dan (2.10).

Accuracy (%) =
$$\frac{(TP+TN)}{(TP+FP+TN+FN)}$$
 (2.7)

Precision (%) =
$$\frac{TP}{(FP+TP)}$$
 (2.8)

Recall (%) =
$$\frac{(TP+TN)}{(TP+FP+TN+FN)}$$
 (2.9)

F1-score (%) =
$$\frac{(2 \text{ x recall x precision})}{(\text{recall+Precision})}$$
 (2.10)

2.15. Penelitian Terkait

Penelitian sebelumnya berfungsi untuk menganalisa dan membedakannya dengan penelitian yang akan dilakukan. Dalam penelitian ini disertakan lima

jurnal penelitian sebelumnya terkait penggunaan model YOLO untuk objek ritel dan kuantisasi, antara lain seperti pada Tabel 2.15.1.

Tabel 2.15.1 Perbandingan Penelitian Sebelumnya (State of the Art)

No.	Judul Jurnal	Tahun dan	Metode	Objek	Perbandingan yang	
	dan Peneliti	Tempat	Penelitian	Penelitian	dijadikan alasan	
		Peneliti			tinjauan penelitian	
1.	An Efficient	2024, India	YOLO-NAS	Grozi-120	Hasil penelitian ini	
	Grocery Detection		+	(120	memberikan wawasan	
	System Using		Kuantisasi	produk,	penting mengenai	
	HYOLO-NAS		+	total 4829	rekomendasi tuning	
	Deep Learning		Tuning	gambar),	hyperparameter	
	Model for Visually		Hyperparameter	Roboflow	terutama pada	
	Impaired People.			Retail	penggunaan optimizer	
	(Chhabra & Goyal,			dataset (20	Adam Weight Decay	
	2024)			produk,	dalam kasus deteksi	
				total 2611	produk ritel. Selain itu	
				gambar)	penelitian ini juga	
					menunjukkan manfaat	
					kuantisasi dalam	
					mempercepat waktu	
					inferensi. Juga	
					melihat dari hasil	

					dataset yang	
					menggunakan	
					roboflow lebih besar	
					akurasinya,	
					menjadikannya	
					referensi dalam	
					pemilihan format	
					dataset yang dipakai	
2.	Retail Product	2024,	YOLOv5+	RPC	Berdasarkan	
	Object Detection	Malaysia	Setting	dataset,	penelitiannya,	
	using YOLOv5 for		Hyperparameter	hanya	ditemukan bahwa	
	Automatic		default COCO	mengambil	penggunaan model	
	Checkout System			produk	YOLOv5 dengan	
	in Smart Retail			yang ada di	pengaturan	
	Environment			Malaysia	hyperparameter	
	(Hamir dkk.,			(26 Produk,	default untuk dataset	
	2024)			total 4160	COCO mungkin	
				gambar)	kurang optimal ketika	
					diterapkan dalam	
					deteksi objek ritel, hal	
					ini dikarenakan	
					peneliti	
					menyimpulkan bahwa	

					model mereka	
					mengalami overfitting	
					karena kinerjanya	
					cukup buruk dalam	
					mendeteksi gambar	
					baru. Selain itu,	
					penelitian ini juga	
					memberikan referensi	
					mengenai	
					pemanfaatan platform	
					roboflow dalam	
					proses pelabelan dan	
					fitur-fitur pre-	
					processing di	
					dalamnya untuk	
					meningkatkan	
					kualitas dataset yang	
					digunakan dalam	
					pelatihan model	
					YOLO.	
3.	Analisis Kinerja	2024,	YOLOv8 +	Dataset	Hasil dari penelitian	
	Deteksi Gerakan	Indonesia	Setting	pribadi,	ini menunjukkan	
	dan Pengenalan			dengan	bahwa model	

	Objek Produk		Hyperparameter	format	YOLOv8 cukup
	Ritel Berbasis		default COCO	VOC 2012	cocok dalam kasus
	YOLOv8			(10 produk,	deteksi produk ritel
	(Kusumawardhani			total 2383	namun terjadi sedikit
	dkk., 2024)			gambar)	penurunan akurasi
					deteksi pada data baru
					atau data yang belum
					dilihat sebelumnya
					karena model terlalu
					memfokuskan detail-
					detail kecil atau noise
					pada data pelatihan
					(indikasi overfitting).
					Selain itu faktor
					barang yang
					bertumpuk juga
					menjadi tantangan
					untuk penelitian
					kedepannya.
4.	Pengembangan	2024,	YOLOv8	Dataset	Penelitian ini
	Sistem Deteksi	Indonesia	+	pribadi	memberikan wawasan
	On-Shelf		Kuantisasi	(135	terkait penerapan
	Availability		ONNX	produk	kuantisasi ke bit yang

Produk	+	dengan	lebih kecil pada
Menggunakan	Inferensi	total 11216	jaringan model,
Algoritma	Mobile	gambar)	termasuk dampak
YOLOv8 pada			positif dan negatifnya
Aplikasi Bergerak			terutama pada
(Andaru &			perangkat <i>mobile</i> .
Fudholi, 2024)			Namun, peneliti pada
			jurnal ini belum
			mengeksplorasi lebih
			lanjut bagaimana efek
			kuantisasi jika
			diterapkan pada jenis
			perangkat lain di luar
			mobile. Walaupun
			model YOLOv8s dan
			YOLOv8n
			memberikan performa
			yang baik, peneliti
			juga
			merekomendasikan
			optimasi lebih lanjut
			pada hyperparameter
			guna meningkatkan

					akurasi dan kinerja
					deteksi secara
					keseluruhan dalam
					mendeteksi objek
					ritel.
5.	Enhanced Self-	2024,	YOLOv10 yang	RPC	Penelitian ini
	Checkout System	Amerika	dimodifikasi	Dataset	menunjukkan bahwa
	for Retail Based	Serikat	dengan head	(200	YOLOv10 masih
	on Improved		dari YOLOv8	produk	memiliki beberapa
	YOLOv10			dengan	keterbatasan yang
	(Tan dkk., 2024)			total 83000	perlu diatasi melalui
				gambar)	modifikasi, seperti
					yang dilakukan dalam
					jurnal ini. Temuan ini
					dapat menjadi dasar
					tinjauan untuk
					mengkaji apakah versi
					terbaru dari YOLO
					mampu memberikan
					peningkatan dalam
					mendeteksi objek ritel
					secara lebih akurat

		dan efisien atau tidak.	
		Selain itu,	mereka
		juga	
		merekomenda	sikan
		variasi	dataset
		berbagai sudu	t dalam
		rotasi objek	360°
		untuk m	engatasi
		berbagai	sudut
		pandang produ	ık.

Berdasarkan temuan dari penelitian-penelitian yang telah dikaji, model YOLO telah banyak digunakan dalam deteksi objek ritel, tetapi tidak semua versinya sesuai untuk skenario ini. Versi yang lebih mendekati model terbaru, seperti YOLOv10, masih memiliki kelemahan yang memerlukan modifikasi arsitektur. Hal ini membuka peluang untuk mengevaluasi versi terbaru, yaitu YOLOv11, guna menentukan kelayakannya dalam mendeteksi objek ritel. Selain itu, beberapa penelitian menunjukkan bahwa konfigurasi hyperparameter yang tepat diperlukan untuk mengoptimalkan performa deteksi dalam skenario ini.

Di sisi lain, walaupun YOLOv11 terbilang sudah efisien untuk berbagai kasus, salah satu penelitian merekomendasikan penelitian selanjutnya untuk melakukan percobaan kuantisasi ke *bit* yang lebih rendah. Kuantisasi telah terbukti efektif dalam mengurangi ukuran model dan mempercepat waktu

inferensi, menjadikannya lebih sesuai untuk implementasi *real-time detection* untuk kedepannya. Namun, dampaknya terhadap akurasi masih menjadi tantangan, karena penurunan akurasi yang signifikan dapat meningkatkan risiko kesalahan deteksi dan berpotensi menyebabkan kerugian dalam sistem ritel otomatis. Oleh karena itu, penelitian ini berfokus pada pengembangan YOLOv11 dengan kuantisasi dan optimasi *hyperparameter* dalam mendeteksi objek ritel guna mencapai keseimbangan antara akurasi, ukuran model dan kecepatan inferensi.