BAB II

TINJAUAN PUSTAKA

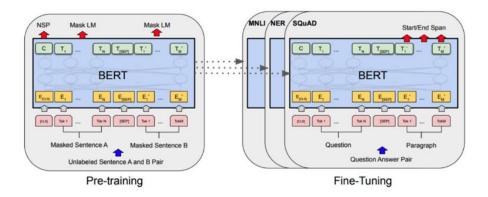
2.1 Landasan Teori

2.1.1 Sarkasme

Sarkasme adalah salah satu jenis majas yang mengandung kata-kata pedas dengan tujuan menyakiti hati orang lain, baik dalam bentuk ejekan maupun cemoohan (Merlina & Dewi, 2022). Kata sarkasme berasal dari bahasa Yunani sarkasmos, yang diturunkan dari kata kerja sarkasein, yang berarti "merobek-robek daging seperti anjing", "menggigit bibir karena marah", atau "berbicara dengan kepahitan" (Dinari, 2015). Selain itu, secara etimologis, istilah sarkasme juga berasal dari bahasa Prancis sarcasmus atau sarkazo, yang memiliki makna "daging atau hati yang tertusuk" (Nasrudin, 2019). Dibandingkan dengan ironi dan sinisme, sarkasme memiliki ungkapan yang lebih tajam, sering disertai nada pahit dan celaan pedas. Gaya bahasa ini bisa bersifat ironis maupun tidak, tetapi selalu memiliki potensi melukai perasaan dan terdengar tidak menyenangkan (Hilmawan, 2022). Sarkasme biasanya digunakan untuk menyindir. Selain itu, sarkasme juga dapat diarahkan pada situasi atau ide. Penggunaan sarkasme sering kali menjadi cara untuk mengungkapkan ekspresi yang tidak dapat disampaikan secara langsung (Dinari, 2015). Sarkasme juga termasuk dalam kategori majas pertentangan, sehingga sering digunakan untuk menyampaikan kalimat yang memiliki makna berlawanan dengan apa yang diucapkan. Pernyataan seperti ini mencerminkan adanya pertentangan antara makna kalimat yang diucapkan dengan maksud yang sebenarnya (Eke dkk., 2021).

2.1.2 IndoBERT

BERT (Bidirectional Encoder Representations from Transformers) merupakan model deep learning berbasis arsitektur Transformer (Devlin dkk., 2019). Salah satu pengembangan dari BERT adalah IndoBERT, yang dilatih pada korpus besar berbahasa Indonesia (Koto dkk., 2020). IndoBERT dikembangkan untuk mengatasi keterbatasan model NLP (Natural Language Processing) sebelumnya yang kurang optimal dalam memahami struktur dan konteks bahasa Indonesia. Model ini mengintegrasikan lebih dari 220 juta kata yang diambil dari sumber terpercaya berbahasa Indonesia, termasuk surat kabar daring dan Korpus Web Indonesia. IndoBERT telah dikembangkan dengan 2,4 juta langkah atau 180 epoch, sehingga memiliki kinerja yang kuat pada berbagai tugas NLP. Model pretrain ini memanfaatkan teknik MLM (Masked Language Modeling) dan NSP (Next Sentence Prediction), yang memungkinkan model memahami hubungan antar kata dan antar kalimat dalam teks. IndoBERT dilatih menggunakan kosakata WordPiece dalam bahasa Indonesia yang mencakup 31.923 token dan menggunakan arsitektur transformer dengan 12 lapisan dan 768 unit pemrosesan (Asyrofiyyah & Sugiharti, 2024).



Gambar 2.1 Pre-training dan Fine-Tuning BERT (Devlin dkk., 2019)

Secara garis besar BERT memiliki dua tugas utama, yaitu pre-training dan fine-tuning, seperti ditampilkan pada Gambar 2.1. Selain itu, BERT juga termasuk model yang menggunakan arsitektur Transformer. Arsitektur transformer, menggunakan dua mekanisme terpisah, yaitu encoder dan decoder. Encoder berfungsi untuk membaca input teks, sedangkan decoder digunakan untuk menghasilkan prediksi. Namun, karena tujuan model BERT adalah menghasilkan representasi bahasa, hanya mekanisme encoder yang diperlukan. Selain itu, berbeda dengan model sequential yang membaca input teks secara searah, baik dari kiri ke kanan atau sebaliknya secara berurutan, model transformer membaca input teks secara dua arah. Hal ini memungkinkan model untuk memahami konteks secara lebih menyeluruh (Putra dkk., 2021).

2.1.3 Optimasi *Hyperparameter*

Hyperparameter adalah variabel yang memengaruhi output dari sebuah model. Nilai hyperparameter harus ditetapkan terlebih dahulu sebelum model menjalani proses training. Nilai hyperparameter ditentukan dengan eksplisit pada saat pendefinisian model dan tidak diperoleh melalui proses training seperti parameter model lainnya (Nugraha & Sasongko, 2022). Optimasi hyperparameter atau hyperparameter tuning adalah proses pencarian secara sistematis untuk mencari kombinasi hyperparameter yang optimal dari model machine learning atau deep learning. Contoh hyperparameter yaitu, learning rate, jumlah hidden layers pada neural network, atau jumlah tree pada random forest. Tujuan akhir dari optimasi hyperparameter adalah untuk meningkatkan kinerja model pada tugastugas seperti klasifikasi atau regresi dengan menemukan konfigurasi yang

11-4

meminimalkan error metrics (seperti loss atau accuracy) pada set validasi (Bartz-

Beielstein & Zaefferer, 2023).

2.1.4 Bayesian *Optimization*

Bayesian Optimization adalah teknik optimasi berbasis model probabilistik

yang digunakan untuk menemukan maksimum (atau minimum) dari fungsi black-

box yang mahal. Fungsi-fungsi ini disebut "black-box" karena tidak memiliki

bentuk analitis yang diketahui dan evaluasinya dapat memakan biaya tinggi, baik

dalam hal waktu maupun sumber daya. Bayesian Optimization menggunakan

surrogate model seperti GP (Gaussian Process) (Chuong B. Do, 2007) atau TPE

(Tree Parzen Estimation) (Bergstra dkk., 2011) untuk memodelkan fungsi objektif

berdasarkan data yang telah diamati. Fungsi akuisisi, seperti EI (Expected

Improvement) (Zhou dkk., 2023) dan UCB (Upper Confidence bBound) (Srinivas

dkk., 2010), memandu evaluasi berikutnya dengan menyeimbangkan eksplorasi

(mencari area baru dengan potensi tinggi) dan eksploitasi (mengoptimalkan area

yang sudah diketahui menjanjikan). Bayesian Optimization secara iteratif

memperbarui model dan menghitung ulang fungsi akuisisi hingga kriteria

penghentian terpenuhi, sehingga mengoptimalkan fungsi black-box yang mahal

secara efisien (Nguyen, 2019). Algoritma Bayesian Optimization dirangkum dalam

Algorithm 1, menjelaskan langkah–langkah utama penerapannya.

Algoritma 1 Bayesian Optimization (Nguyen, 2019).

Input: initial data D_0 , #iter T

Output: x_{max} , y_{max}

for t = 1 to T do

- 2 Fit a GP from D_t and obtain $x_t = \arg \max \alpha(x)$
- 3 Evaluate $y_t = f(x_t)$ and $D_t = D_{t-1} \cup (x_t, y_t)$

4 end for

Data awal D_0 merupakan pasangan nilai *input* dan *output* fungsi objektif (x, y), serta T merupakan banyaknya iterasi. Langkah 1 sampai 4 merupakan proses iterasi sebanyak T kali. Untuk setiap iterasinya, algoritma memodelkan fungsi objektif f(x) menggunakan GP (Gaussian *Process*) berdasarkan dataset saat ini D_t . GP menghasilkan prediksi nilai fungsi dan tingkat ketidakpastian di seluruh ruang input. Berdasarkan model ini, algoritma memaksimalkan fungsi akuisisi $\alpha(x)$ untuk memilih nilai x_t berikutnya yang akan dievaluasi. Setelah itu, nilai fungsi $y_t = f(x_t)$ dihitung, dan pasangan data baru (x_t, y_t) ditambahkan ke dataset D_t . Langkah 2 sampai 3 terus diulang sampai jumlah iterasi maksimum. Pada akhir iterasi, algoritma menghasilkan titik terbaik yang ditemukan selama proses optimasi, berupa nilai maksimum fungsi y_{max} dan lokasi x_{max} .

2.1.5 Hyperband

Hyperband adalah algoritma yang digunakan untuk optimasi hyperparameter, yang menggabungkan random search dengan strategi alokasi sumber daya yang adaptif. Algoritma ini bertujuan mengidentifikasi konfigurasi hyperparameter terbaik untuk model machine learning secara efisien dengan memanfaatkan teknik early stopping. Metode Hyperband dikembangkan untuk mengatasi keterbatasan algoritma SH (Successive Halving) (Soper, 2022), khususnya dalam memilih konfigurasi yang relevan secara dinamis (Li dkk., 2018). Tujuan utama Hyperband adalah mencapai keseimbangan optimal antara jumlah

konfigurasi *hyperparameter* (n) dan alokasi *budget* (b) dengan membagi total *budget* (B) menjadi n bagian, di mana setiap bagian dialokasikan ke struktur tertentu (b=B/n). Pendekatan ini SH menjalankan subproses pada setiap struktur yang dihasilkan secara acak, menghapus konfigurasi *hyperparameter* dengan kinerja buruk, dan mengalokasikan lebih banyak sumber daya pada konfigurasi yang menjanjikan, sehingga meningkatkan *accuracy* keseluruhan (Abdellatif dkk., 2022). Algoritma Hyperband dirangkum dalam *Algorithm* 2, menjelaskan langkahlangkah utama penerapannya.

Algorithm 2 Hyperband Algorithm Using SH (Abdellatif dkk., 2022).

Input: budgets b_{min} , b_{max} , and η

Output: best configurations

$$s_{max} = \left[log_{7} \frac{b_{max}}{b_{min}} \right]$$

- 2 **for** $s \in (s_{max}, s_{max} 1, ..., 0)$ **do**
- determine budgets $n = \left[\frac{s_{max}+1}{s+1} * \eta^{s}\right]$
- 4 $\gamma = \text{sample configurations(n)}$
- 5 run SH on γ with η^s . b_{max} as initial budget
- 6 end

7 **return** best configuration

Batas *budget* b_{max} dan b_{min} ditentukan oleh keseluruhan data, *budget* yang tersedia, dan jumlah minimum kasus yang diperlukan untuk melatih model yang masuk akal. Pada langkah kedua dan ketiga *Algorithm* 2, ukuran *budget* dan jumlah konfigurasi (n) untuk setiap percobaan dihitung berdasarkan batasan budget

tersebut. Selanjutnya, pada langkah keempat dan kelima, konfigurasi diambil sampelnya berdasarkan alokasi anggaran (b) dan jumlah konfigurasi (n), kemudian dikirim ke model SH. Algoritma SH akan memilih konfigurasi yang menunjukkan kinerja terbaik untuk diteruskan ke iterasi berikutnya, sekaligus mengeliminasi konfigurasi yang berkinerja buruk. Hyperband akan berhenti ketika ditemukan konfigurasi hyperparameter terbaik atau ketika jumlah iterasi maksimum tercapai. Kompleksitas waktu Hyperband dihitung menggunakan notasi big-O, dengan nilai kompleksitas sebesar $O(n \log n)$, yang termasuk teknik pencarian dari SH (Li dkk., 2018).

2.1.6 BOHB (Bayesian Optimization Hyperband)

Bayesian *Optimization* Hyperband (BOHB) adalah teknik optimasi yang menggabungkan kelebihan Bayesian *Optimization* (Nguyen, 2019) dan Hyperband (Li dkk., 2018) untuk secara efisien mencari konfigurasi nilai *hyperparameter* yang optimal dalam model *machine learning*. BOHB memanfaatkan *framework* Hyperband, yang mengalokasikan *budget* tetap dan menggunakan *successive halving* untuk secara bertahap mengeliminasi konfigurasi yang kurang menjanjikan. Model probabilistik dari Bayesian Optimization diintegrasikan untuk memandu pengambilan sampel, meningkatkan kemungkinan pemilihan konfigurasi yang optimal. Dengan menyeimbangkan eksplorasi dan eksploitasi, BOHB menunjukkan kinerja yang kuat pada *budget* pendek maupun panjang, menjadikannya alat yang efektif untuk mengoptimalkan *hyperparameter* dalam tugas-tugas *machine learning* yang kompleks (Falkner dkk., 2018). Algoritma

Bayesian *Optimization* Hyperband dirangkum dalam *Algorithm* 3, menjelaskan langkah – langkah utama penerapannya.

Algorithm 3: Pseudocode for Sampling in BOHB (Falkner dkk., 2018).

Input: observations D, fraction of random runs ρ , precentile q, number of samples N_s , minimum number of points N_{min} to build a model, and bandwidth factor b_w

Output: next configuration to evaluate

- 1 **if** rand() $\leq \rho$ **then return** random configuration
- 2 $b = \arg \max\{D_b : |D_b| \ge N_{min} + 2\}$
- 3 if $b = \emptyset$ then return random configuration
- 4 fit KDEs according to Eqs. (2) and (3)
- 5 draw N_s samples according to l'(x) (see next)
- 6 **return** sample with highest ratio l(x) / g(x)

Tahapan pada algoritma ini dimulai dengan memilih konfigurasi secara acak untuk memastikan eksplorasi ruang parameter, dengan probabilitas ρ . Jika konfigurasi tidak dipilih secara acak, proses dilanjutkan ke langkah berikutnya, yaitu memanfaatkan informasi dari observasi sebelumnya. Selanjutnya, menentukan $budget\ b$ yang memiliki jumlah observasi $|D_b|$ terbesar dan memenuhi kriteria $|D_b| \geq N_{min} + 2$. Apabila tidak ada $budget\ b$ yang memenuhi kriteria, algoritma kembali ke langkah awal untuk memilih konfigurasi secara acak. Distribusi probabilitas dari konfigurasi terbaik kemudian diperkirakan menggunakan KDE ($Kernel\ Density\ Estimation$). Selanjutnya, diambil N_s sampel dari distribusi berbobot l'(x), yang proporsional terhadap rasio l(x)/g(x). Dari N_s

sampel yang telah diambil, dipilih konfigurasi dengan nilai rasio l(x)/g(x) tertinggi. Konfigurasi tersebut kemudian ditetapkan sebagai konfigurasi berikutnya untuk dievaluasi.

2.1.7 Optuna

Optuna adalah *framework* optimasi *hyperparameter* yang dirancang untuk mengotomatiskan proses pencarian *hyperparameter* dalam machine learning atau deep learning. Optuna menggunakan prinsip *define-by-run* yang inovatif, yang memungkinkan pengguna untuk membangun ruang pencarian secara dinamis selama proses pengoptimalan. Fleksibilitas ini memungkinkan alur kerja yang lebih kompleks tanpa perlu mendefinisikan semua parameter sebelumnya. Selain itu, Optuna menyertakan algoritma yang efisien untuk pengambilan sampel *hyperparameter* dan uji coba pemangkasan yang tidak mungkin memberikan hasil yang baik, sehingga membantu mempercepat proses pengoptimalan dengan membuang konfigurasi yang tidak menjanjikan lebih awal (Akiba dkk., 2019).

2.2 State-of-the-Art

State of the art yang disajikan pada Tabel 2.1 berisi tentang hasil penelitian yang sudah dilakukan sebelumnya, berkaitan dengan penerapan judul penelitian yang dilakukan yaitu "Analisis Komparasi Teknik Optimasi Hyperparameter Pada IndoBERT untuk Deteksi Sarkasme Berbahasa Indonesia".

Tabel 2.1 State-of-the-Art Penelitian

No	Nam	a Peneliti/Journal	Hasil Penelitian
	Peneliti (tahun)	Mohan dkk., (2023)	Model BERT-GCN, mengungguli model GCN, Sequential dan LSTM lainnya
	Judul	Sarcasm Detection Using	dan menunjukkan accuracy 90,7%, F1-score sebesar 89,6% pada dataset
		Bidirectional Encoder	Headline dan accuracy sebesar 88,3% dengan F1-score sebesar 87,7% pada
1		Representations from	dataset Riloff. Dataset News Headlines berjumlah 3086 sarkastik dan 2914 non-
1		Transformers and Graph	sarkastik. Sedangkan dataset Riloff berjumlah 317 sarkastik dan 1164 non-
		Convolutional Networks	sarkastik.
	Algoritma/	GCN, LSTM, Sequential,	
	Metode	BERT-GCN	
	Peneliti	Bagate dkk., (2021)	Teknik stacking dengan mengkombinasikan model Regresi Linear dan model
	Judul	Sarcasm Detection Of Tweets	LSTM ke XGBoost berhasil mencapai accuracy 73%. Metode ini mampu
2		Without #Sarcasm: Data Science	mengenali kalimat sarkasme dan non-sarkasme tanpa adanya hashtag atau
2		Approach	konteks lainnya. Pada penelitian deteksi sarkasme ini dataset yang digunakan
	Algoritma/	LR, LSTM, XGBoost	merupakan dataset dari twitter yang tersedia di kaggle dengan jumlah yang
	Metode		balance untuk kedua kelas sarkasme dan non-sarkasme, yaitu 24452 dan 26736.
3	Peneliti	Parkar dkk., (2023)	

No	Nai	na Peneliti/Journal	Hasil Penelitian
	Judul	Analytical Comparison On	Model BERT memberikan kinerja terbaik di antara model deep learning dan
		Detection Of Sarcasm Using	model machine learning dengan nilai accuracy 92,73% dan F1-score 93% pada
		Machine Learning And Deep	dataset News Headlines dan nilai accuracy 75% dan F1-score 74% pada dataset
		Learning Techniques	Reddit. Pada penelitian deteksi sarkasme ini dataset yang digunakan merupakan
	Algoritma/	NB, SGD, KNN, LR, DT, RF,	dataset dari kaggle . Pertama, dataset News Headlines yang terdiri dari 28619
	Metode	SVM, GB, EM, LSTM, LSTM	data. Sedangkan dataset kedua yaitu dataset review reddit dengan jumlah data
		+ RNN, RNN, CNN, GloVe, Bi-	8000.
		LSTM, BERT	
	Peneliti	Hao dkk., (2023)	Metodologi yang diusulkan mencapai nilai 0,69, 0,70, dan 0,83 dalam hal
	Judul	Enhanced Semantic	accuracy pada set data Main balanced, Pol balanced dan set data Pol tidak
		Representation Learning for	seimbang secara berurutan. Pada penelitian deteksi sarkasme ini dataset yang
		Sarcasm Detection by	digunakan merupakan datset SARC dengan 3 variant datasetnya, yaitu: Main
4		Integrating Context-Aware	balanced, Pol Balanced, Pol imbalanced.
		Attention and Fusion Network	
	Algoritma/	Bi-LSTM Encoder + Context-	
	Metode	Aware Attention + Fusion	
		Network atau CSDM	
	Peneliti	Hilmawan (2022)	Bidirectional LSTM mendapatkan accuracy validasi sebesar 82,55% dan F1-
	Judul	Deteksi Sarkasme Pada Judul	score sebesar 80,92% dan algoritma LSTM mendapatkan accuracy validasi
		Berita Berbahasa Inggris	sebesar 81,90% 1dan <i>F1-score</i> sebesar 80,47%. Pada penelitian deteksi
5		Menggunakan Algoritma	sarkasme ini dataset yang digunakan merupakan dataset News Headlines.
		Bidirectional LSTM	
	Algoritma/	LSTM, BiLSTM	
	Metode		
6	Peneliti	Gole dkk., (2023)	

No	Nama	a Peneliti/Journal	Hasil Penelitian
	Judul	On Sarcasm Detection with	Dalam kasus fine-tuning, model GPT-3 mencapai accuracy dan F1-score
		OpenAI GPT-based Models	sebesar 0,81 mengungguli model-model sebelumnya. Dalam kasus zero-shot,
	Algoritma/	GPT-3, InstructGPT, GPT-3.5,	salah satu model GPT-4 menghasilkan <i>accuracy</i> 0,70 dan <i>F1-score</i> 0,75. Model
	Metode	GPT-4	lainnya memiliki skor yang lebih rendah. Penelitian deteksi sarksame ini
			dilakukan menggunakan dataset SARC 2.0 versi political dan balanced (pol-
			bal)
	Peneliti	Misra dkk., (2023)	Arsitektur model Hybrid Neural Network dengan menggunakan attention
	Judul	Sarcasm Detection Using News	mechanism yang cukup kompleks pada Dataset News Headlines mencapai
7		Headlines Dataset	kinerja yang sangat baik, mencapai accuracy hampir 89%. Penelitian deteksi
	Algoritma/	CNN + BiLSTM + Attention	sarkasme ini dilakukan pada dataset berkualitas tinggi dan berskala besar yang
	Metode	Mechanism + MLP	dikumpulkan dari website berita sarkastik dan website berita nyata.
	Peneliti	Bagate dkk., (2022)	Setelah melatih dan menguji model SVM-RNN untuk beberapa iterasi, model
	Judul	Sarcasm Detection on Text for	ini memberikan <i>F1-score</i> pengujian yang sangat baik sebesar 75.75% dan
8		Political Domain — An	accuracy 80% untuk model yang dijelaskan. untuk deteksi sarkasme dengan
0		Explainable Approach	weighted average. Penelitian deteksi sarkasme ini dilakukan pada dataset SARC
	Algoritma/	SVM-RNN + weighted average	yang terdiri dari 533 juta komentar ditulis dalam bahasa Inggris, dimana 1.3 juta
	Metode		komentar merupakan sarkastik.
	Peneliti	Sharm dkk., (2022)	Model yang diusulkan diverifikasi pada tiga dataset berbeda media sosial dunia
	Judul	Sarcasm Detection Over Social	nyata , Self-Annotated Reddit Corpus (SARC), dataset News Headlines, dan
9		Media Platforms Using Hybrid	Dataset Twitter. Accuracy yang dicapai adalah 83%, 92%, 90,8% dan 92,80%.
9		Auto-Encoder-Based Model	Nilai metrik accuracy lebih baik daripada state-of-the-art sebelumnya.
	Algoritma/	LSTM autoencoder + USE +	Penelitian deteksi sarkasme ini dilakukan pada 3 dataset nyata sosial media,
	Metode	BERT	yaitu : SARC, headlines dataset, twitter dataset.
10	Peneliti	Jayaraman dkk., (2022)	

No	N:	ama Peneliti/Journal	Hasil Penelitian
	Judul	Sarcasm Detection in News	Model RoBERTa mencapai hasil yang sebanding dengan context-independent
		Headlines using Supervised	features. Secara khusus, model ini mencapai 93,26% dan 93,11% pada dataset
		Learning	versi 1 untuk validasi dan pengujian. Demikian pula, model ini mencapai
	Algoritma/	NB-SVM, LR, BiGRU, BERT,	93,36% dan 93,82% dalam dataset versi 2. Penelitian deteksi sarksame ini
	Metode	DistilBERT, RoBERTa, XLNet	dilakukan pada 2 versi news headlines dataset. dataset versi 1 terdiri dari 26709
			total news headlines yang berisi 11724 sarkastik dan 14985 non-sarkastik.
			Sementara dataset versi 2 terdiri dari 28619 total news headlines yang berisi
			13634 sarkastik dan 14985 non-sarkastik.
	Peneliti	Fitrianto dkk., (2024)	IndoBERT yang diadaptasi secara khusus mencapai F1-score yang tinggi
	Judul	Classification of Indonesian	sebesar 95% pada dataset yang kami peroleh dari penelitian sebelumnya yang
11		Sarcasm Tweets on X Platform	berisi berbagai macam tweet. Penelitian deteksi sarkasme ini menggunakan
11		Using Deep Learning	dataset twitter yang terdiri dari 8700 tweet dengan jumlah yang seimbang untuk
	Algoritma/	IndoBERT, RoBERTa, BERT	kelas tweet sarkasme dan non-sarkasme.
	Metode	base, BERT Multilingual	
	Peneliti	Sharma dkk., (2023)	Model ensemble dengan mengkombinasikan word embedding dari GloVe,
	Judul	Sarcasm Detection over Social	Word2Vec dan BERT kemudian menjadi input untuk Fuzzy Logic ini memilki
		Media Platforms Using Hybrid	accuracy masing-masing sebesar 90,81%, 85,38%, dan 86,80%. Pada dataset
12		Ensemble Model with Fuzzy	Headlines, "Self-Annotated Reddit Corpus" (SARC) dan dataset aplikasi
		Logic	Twitter secara berurutan.
	Algoritma/	(Word2Vec, GloVe, BERT) +	
	Metode	Fuzzy Logic	
	Peneliti	Tan dkk., (2023)	Hybrid model Bi-LSTM daan Multi-Task Learning yang digunakan pada
13	Judul	Sentiment Analysis and Sarcasm	penelitian ini mengungguli metode yang sudah ada yang ada dengan selisih 3%,
13		Detection using Deep	dengan F1-score sebesar 94%. Penelitian deteksi sarkasme ini menggunakan
		Multi-Task Learning	dataset dari Reddit, Twitter US airline dan Twitter.

No	Nar	na Peneliti/Journal	Hasil Penelitian
	Algoritma/	Bi-LSTM + Multi-Task	
	Metode	Learning	
	Peneliti	Farhan dkk., (2023)	Penggunaan model BiLSTM dan word embedding GloVe yang digunakan pada
	Judul	Automatic Sarcasm Detection	penelitian in telah mencapai accuracy 86,35%, dengan recall 88%, Precision,
		on Cross-Platform Social Media	dan F1-score. Penelitian deteksi sarkasme ini menggunakan dataset Twitter
14		Datasets: A GLoVe and Bi-	(Gosh and Veale), News Headlines, Sarcasm Corpus V2dataset, Combined
		LSTM Based Approach	Dataset (multi-domain).
	Algoritma/	GloVe + Bi-LSTM	
	Metode		
	Peneliti	Eke dkk., (2021)	Evaluasi teknik ensemble ini pada dua dataset benchmark Twitter mencapai
	Judul	Context-Based Feature	presisi tertinggi 98,5% dan 98,0%, dan dataset IAC-v2 mencapai presisi
		Technique for Sarcasm	tertinggi 81,2%. Mengungguli baseline model BiLSTM dan BERT.
		Identification in Benchmark	
15		Datasets Using Deep Learning	
		and BERT Model	
	Algoritma/	GloVe + BiLSTM, BERT +	
	Metode	Feature Fusion	
	Peneliti	Sandor dkk., (2024)	BERT-based model, memiliki kinerja lebih baik dibandingkan dengan model
	Judul	Sarcasm Detection In Online	machine learning dan deep learning dengan mencapai accuracy 73,1% F1-
16		Comments Using Machine	score 72,4% recall 71.3% precision 72,2%. Penelitian deteksi sarkasme ini
10		Learning	menggunakan dataset 1,3 juta komentar sosial media, terdiri dari kelas
	Algoritma/	LR, RR, SVM, BiLSTM, BERT	sarkastik dan non-sarkastik
	Metode		
17	Peneliti	Siddiqui dkk., (2021)	SVM memiliki kinerja lebih baik dibandingkan dengan klasifikasi machine

No	Na	ma Peneliti/Journal	Hasil Penelitian
	Judul	Sarcasm Detection from Social	learning konvensional dengan mencapai F1-score sebesar 84%. Penelitian
		Media Posts using Machine-	deteksi sarkasme ini menggunakan dataset hasil scrapping dari twitter dengan
		learning Techniques: A	total 13,882 tweet. Terdiri dari kelas sarkastik 6,382 kelas sementara kelas
		Comparative Analysis	non-sarkastik 7,500 tweet
	Algoritma/	SVM, RF, DT, KNN, LR, GB,	
	Metode	NB	
	Peneliti	Rosid dkk., (2022)	Kinerja model MHA-CovBi yang diusulkan dievaluasi melalui analisis
	Judul	Sarcasm Detection in	komparatif terhadap pendekatan yang ada. Model ini berhasil mengungguli
		Indonesian-English CodeMixed	state of the art terkini dengan mencapai accuracy 94,60% dan F1-score
		Text Using Multihead	94,38%. Pada penelitian deteksi sarkasme ini dataset yang digunakan
18		Attention-Based Convolutional	merupakan dataset dari scrapping pada platform twitter dengan total jumlah
		and Bi-Directional GRU	5000 dataset pada dataset DS1 yang terdiri dari 2450 tweet sarkastik dan 2550
	Algoritma/	CNN+BiGRU	tweet non-sarkastik berbahasa Indonesia-Inggris. Sedangkan dataset DS2
	Metode		memiliki total 28.619 tweet yang terdiri dari 13.635 tweet sarkastik dan 14984
			tweet non-sarkastik berbahasa Inggris.
	Peneliti	Suhartono dkk., (2024)	Ditemukan bahwa model bahasa fine-tuning pre-train masih lebih unggul
	Judul	IdSarcasm: Benchmarking and	daripada teknik lain, mencapai F1-score 62,74% dan 76,92% di Reddit dan
		Evaluating Language Models for	Twitter secara berurutan. Ditemukan juga bahwa LLM terbaru gagal
19		Indonesian Sarcasm Detection	melakukan klasifikasi zero-shot untuk deteksi sarkasme dan bahwa mengatasi
	Algoritma/	LR, NB, SVM, BERT, XLM,	ketidakseimbangan data membutuhkan pendekatan augmentasi data yang lebih
	Metode	BLOOMZ, mT0	canggih daripada metode dasar kami. Pada penelitian deteksi sarkasme ini
			menggunakan dataset hasil scrapping dari reddit dan twitter.
	Peneliti	Pawestri dkk., (2024)	secara keseluruhan tertinggi dapat dicapai pada fold 6, 0.897 untuk accuracy
20	Judul	Sarcasm Detection A	validasi, 0.883 untuk <i>F1-score</i> dan presisi, dan 0.882 untuk recall pada model
		Comparative Analysis of	CNN + RoBERTa. Sebaliknya, RNN menunjukkan accuracy 0,711, presisi

No	N	Nama Peneliti/Journal	Hasil Penelitian
21	Algoritma/ Metode Peneliti Judul	Roberta-CNN vs Roberta-RNN Architectures Roberta-CNN, Roberta-RNN Rahman dkk., (2024) Indobertweet for Sarcasm Evaluating Domain-Adapted Transformers for Indonesian Twitter Sarcasm Classification	0,692, recall sebesar 0.620, F1-score 0.654, dan loss sebesar 0.564, dengan waktu pemrosesan yang lebih lama waktu 116500 milidetik per epoch. Pada penelitian deteksi sarkasme ini meggunakan dataset News Headlines. Model IndoBERTweet yang telah disempurnakan mencapai accuracy sebesar 89,00%, dengan demikian mengungguli model-model seperti IndoGPT, IndoBERT, dan LSTM, menegaskan posisinya sebagai yang yang paling canggih. Dengan demikian, dapat disimpulkan bahwa IndoBERTweet menyajikan pendekatan yang menjanjikan untuk klasifikasi sarkasme yang menjanjikan untuk klasifikasi sarkasme dalam korpus data Twitter berbahasa Indonesia. Pada penelitian deteksi sarkasme ini menggunakan dataset Twitter
22	Peneliti Judul	Muhaddisi dkk., (2021) Sentiment Analysis With Sarcasm Detection On Politician's Instagram	berbahasa Indonesia. Penelitian ini menghasilkan nilai akurasi pada analisis sentimen tanpa deteksi sarkasme dengan Naive Bayes sebesar 61%, dengan metode Random Forest sebesar 72%. Hasil akurasi pada analisis sentimen dengan deteksi sarkasme menggunakan metode Naïve Bayes – Random Forest sebesar 60% dan metode Random Forest – Random Forest sebesar 71%.
23	Peneliti Judul	Rahaman dkk., (2021) Sarcasm Detection in Tweets A Feature-based Approach using Supervised Machine Learning Models	Penelitian ini mengungkapkan kumpulan fitur sarkastik dengan model supervised machine learning yang efektif, menunjukan akurasi yang lebih baik. Hasil penelitian menunjukkan bahwa Decision Tree (91,84%) dan Random Forest (91,90%) mengungguli dalam hal akurasi dibandingkan dengan algoritma supervised machine learning lainnya untuk pemilihan fitur yang tepat. Penelitian ini telah menyoroti model supervised machine learning yang sesuai bersama dengan kumpulan fitur yang sesuai untuk mendeteksi

No	Nam	a Peneliti/Journal	Hasil Penelitian								
			sarkasme dalam tweet.								
	Peneliti	Kusumastuti dkk., (2022)	Hasil penelitian pendeteksian kalimat sarkasme menggunakan SentiStrength memperoleh nilai akurasi sebesar 54,52%. Selain itu, penelitian ini berhasil								
24	Judul	Detection of Sarcasm Sentences in Indonesian Tweets using SentiStrength	menemukan kelemahan SentiStrength, yaitu kurangnya pembobotan singkatan negatif pada setiap kamus, kurangnya pembobotan kata kata yang kuat, dan bahasa gaul.								
	Peneliti	Pernanda dkk., (2021)	Hasil eksperimen menunjukkan bahwa metode LSTM dengan Word2Vec mampu mencapai akurasi 82,13% dan f1-score sebesar 61,31% mengungguli								
25	Judul	Sarcasm Detection of Tweets in Indonesian Language Using Long Short-Term Memory	TF-IDF konvensional dengan naïve Bayes pendeteksi sarkas.								
	Peneliti	Arlim dkk., (2022)	Hasil eksperimen menunjukkan bahwa model dengan fitur hiperbola sebagai								
26	Judul	Sarcasm Detection in Indonesian Tweets Using Hyperbole Features	fitur untuk SVM, RF dan RF+ Bagging mengklasifikasikan lebih banyak tweet dalam data pengujian sebagai sarkasme daripada yang tanpa hiperbola.								
	Peneliti	Rosid dkk., (2022)	Hasil eksperimen menunjukkan bahwa kombinasi word embedding fastText								
27	Judul	Pre-Trained Word Embeddings for Sarcasm Detection in Indonesian Tweets A Comparative Study	dan BiGRU sebagai pengklasifikasi menghasilkan kinerja terbaik, dengan akurasi 93.85%.								
28	Peneliti	Fu dkk., (2024)	Hasil eksperimen kami menunjukkan peningkatan yang signifikan dalam								

No	Nar	ma Peneliti/Journal	Hasil Penelitian
	Judul	Multi-Modal Sarcasm Detection with Sentiment Word Embedding	akurasi deteksi sarkasme dengan menyematkan kata-kata emosional ke dalam vektor fitur. Penilaian dilakukan secara ekstensif pada dataset benchmark publik, yang menunjukkan bahwa metode yang diusulkan, yaitu Desnet + BERT + VIT + BiLSTM melampaui metode dasar yang ada saat ini.
29	Peneliti Judul	Rosid dkk., (2023) Ensemble Machine Learning to Detect Sarcasm in English on Twitter Social Media	Algoritma Support Vector Machine (SVM) telah mencapai akurasi yang baik. Model ini dapat digunakan untuk mendeteksi keberadaan sarkasme dalam teks dengan tingkat keberhasilan 80% pada dimensi 20.
30	Peneliti Judul	Azka Fauzi Al-Parisi (2024) Deteksi Sarkasme Menggunakan Bidirectional Encoder Representations from Transformers (BERT) Pada Teks Bahasa Indonesia	Hasil eksperimen membuktikan performa model IndoSarcasm memiliki akurasi sebesar 84.77% dengan nilai parameter lain yang relatif seimbang yaitu precision sebesar 84.58%, recall sebesar 84.97% dan F1-Score sebesar 84.77%. Hal ini diperkuat dengan hasil eksperimen selama pelatihan, yaitu tidak ditemukannya indikasi overfitting.

Berdasarkan kajian terhadap penelitian sebelumnya diketahui bahwa model *deep learning* memiliki kinerja yang unggul dalam tugas deteksi sarkasme. Selain itu, penelitian deteksi sarkasme pada bahasa yang lebih spesifik juga masih menjadi tantangan. Penelitian deteksi sarkasme berbahasa Indonesia sebelumnya telah dilakukan oleh beberapa peneliti, tetapi penelitiannya masih terbatas sehingga

memberikan ruang untuk pengembangan lebih lanjut . Oleh karena itu, dilakukan penelitian dengan judul "Analisis Komparasi Teknik Optimasi Hyperparameter Pada IndoBERT untuk Deteksi Sarkasme Berbahasa Indonesia".

2.3 Matriks Penelitian

Tabel 2.2 merupakan matriks penelitian yang berisi perbandingan berbagai penelitian terkait deteksi sarkasme menggunakan teknik machine learning dan deep learning. Kolom-kolom yang disertakan memberikan gambaran tentang metode yang diterapkan.

Tabel 2. 2 Matriks penelitian

												Rua	ang l	Lingl	kup									
			Model Machine Learning													Re	epres Te	senta ks	D	et				
No	Peneliti/ Tahun	Judul	Logistic Regression	Naive Bayes	Support Vector Machine	K-Nearest Neighbors	Decision Tree	Random Forest	Passive Aggressive Classifier	Expectation Maximization	Gradient Boosting	CNN	RNN	LSTM	BiGru	BERT	XLNet	FaxtText	Word2Vec	GloVe	TF-IDF	Twitter	Reddit	News Headlines
1	(Mohan dkk., 2023)	Sarcasm Detection Using Bidirectional Encoder Representations from												>		✓							√	✓

		Transformers and Graph																		
		Convolutional Networks																		
		Sarcasm Detection of																		
2	(Bagate,	Tweets Without	/							√			√					./		
	2021)	#Sarcasm: Data Science	V							V			\ \ \					V		
		Approach																		
		Analytical Comparison																		
	(Parkar &	On Detection Of Sarcasm																		
3	Bhalla,	Using Machine Learning	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	\checkmark					\checkmark	✓
	2024)	And Deep Learning																		
		Techniques																		
		Enhanced Semantic																		
		Representation Learning																		
4	(Hao dkk.,	for Sarcasm Detection by											1		√				√	
7	2023)	Integrating Context-											`		V				V	
		Aware Attention and																		
		Fusion Network																		
		Deteksi Sarkasme Pada																		
	(Hilmawan,	Judul Berita Berbahasa																		
5	2022)	Inggris Menggunakan											✓				✓			✓
	2022)	Algoritma Bidirectional																		
		LSTM																		
	(Gole dkk.,	On Sarcasm Detection																		
6	2023)	with OpenAI GPT-based																	\checkmark	
		Models																		
7	(Misra,	Sarcasm Detection Using									√		√			√				√
,	2023)	News Headlines Dataset									*		*			*				*

8	(Bagate & Suguna, 2022)	Sarcasm Detection on Text for Political Domain — An Explainable Approach			✓					√									✓	
9	(Sharma, 2022)	Sarcasm Detection Over Social Media Platforms Using Hybrid Auto- Encoder-Based Model									✓		✓					✓	√	√
10	(Jayaraman dkk., 2022)	Sarcasm Detection in News Headlines using Supervised Learning	√	✓	√							>	✓		\	✓				√
11	(Fitrianto dkk., 2024)	Classification of Indonesian Sarcasm Tweets on X Platform Using Deep Learning											✓					✓		
12	(Sharma dkk., 2023)	Sarcasm Detection over Social Media Platforms Using Hybrid Ensemble Model with Fuzzy Logic											✓		√	√	√	√	√	✓
13	(Tan dkk., 2023)	Sentiment Analysis and Sarcasm Detection using Deep Multi-Task Learning							✓		✓				√			✓	√	✓
14	(Farhan dkk., 2024)	Automatic Sarcasm Detection on Cross- Platform Social Media Datasets: A GLoVe and									√					√		✓		✓

		Bi-LSTM Based																	
		Approach																	
		Context-Based Feature																	
		Technique for Sarcasm																	
15	(Eke dkk.,	Identification in										√		√		√	√		
	2021)	Benchmark Datasets										`		•		•	•		
		Using Deep Learning and																	
		BERT Model																	
	(Šandor &	Sarcasm Detection in																	
16	Bagić	Online Comments Using	√		√							√		√				√	
	Babac,	Machine Learning	`		`							`		•				v	
	2024)																		
		Sarcasm Detection from																	
	(Siddiqui dkk., 2021)	Social Media Posts using																	
17		Machine-learning	✓	✓	✓	✓	✓	✓		✓							\checkmark		
	dkk., 2021)	Techniques: A																	
		Comparative Analysis																	
		Sarcasm Detection in																	
		Indonesian-English																	
18	(Rosid,	CodeMixed Text Using									√		√		√	√	√		
10	2022)	Multihead Attention-									*		~		V	'	V		
		Based Convolutional and																	
		Bi-Directional GRU																	
	(Suhartono	IdSarcasm:																	
19	dkk., 2024)	Benchmarking and	✓	✓	✓									\checkmark		✓	\checkmark	✓	
	ukk., 2024)	Evaluating Language																	

		Models for Indonesian														
		Sarcasm Detection														
		Sarcasm Detection a														
	(Pawestri &	Comparative Analysis of														
20	Auzan,	RoBERTa-CNN vs							✓	✓	✓					✓
	2024)	RoBERTa-RNN														
		Architectures														
	(Fitrahtur	IndoBERTweet for														
	Rahman &	Sarcasm Evaluating														
21	Abba	Domain-Adapted									,				,	
21	Suganda	Transformers for									√				√	
	Girsang,	Indonesian Twitter														
	2024)	Sarcasm Classification														
	(Muhaddisi	Sentiment Analysis With														
22	dkk., 2021)	Sarcasm Detection On		✓			✓									
	ukk., 2021)	Politician's Instagram														
		Sarcasm Detection in														
	(Rahaman	Tweets A Feature-based														
23	dkk., 2021)	Approach using	✓		✓	✓	✓								\checkmark	
	ukk., 2021)	Supervised Machine														
		Learning Models														
	(Kusumastu	Detection of Sarcasm														
24	ti dkk.,	Sentences in Indonesian													,	
Z4		Tweets using													V	
	2022)	SentiStrength														
25	(Pernanda	Sarcasm Detection of		,						/			/	/		
23	dkk., 2021)	Tweets in Indonesian		✓						√			√	✓		

		Language Using Long															
		Short-Term Memory															
	(A 1:	Sarcasm Detection in															
26	(Arlim	Indonesian Tweets Using					✓									✓	
	dkk., 2022)	Hyperbole Features															
		Pre-Trained Word															
	(Rosid	Embeddings for Sarcasm															
27	dkk., 2022)	Detection in Indonesian							✓	✓	✓	\checkmark	\checkmark			✓	
	ukk., 2022)	Tweets A Comparative															
		Study															
	(Fu dkk.,	Multi-Modal Sarcasm															
28	2024)	Detection with Sentiment								✓		\checkmark					
	2024)	Word Embedding															
	(Rosid dkk., 2023)	Ensemble Machine															
29		Learning to Detect	√	√	√	√										√	
2)		Sarcasm in English on	\ \ \	*	•	\ \ \										•	
		Twitter Social Media															
		Deteksi Sarkasme															
	(Azka	Menggunakan															
	Fauzi Al-	Bidirectional Encoder															
30	Parisi,	Representations from										\checkmark				✓	
	2024)	Transformers (BERT)															
	2021)	Pada Teks Bahasa															
		Indonesia															
	(Ajeng	Analisis Komparasi															
31	Alya	Teknik Optimasi										✓				✓	
	1 miy u	Hyperparameter Pada															

Kartika	IndoBERT untuk											
Sari, 2025)	Deteksi Sarkasme											
	Berbahasa Indonesia											

Di samping penggunaan *pre-trained* model seperti IndoBERT yang telah terbukti efektif dalam mendeteksi sarkasme berbahasa Indonesia, penerapan teknik optimasi *hyperparameter* secara otommatis dan menganalisis pengaruhnya terhadap peningkatan kinerja model belum banyak diterapkan. Penerapan teknik optimasi tersebut berpotensi meningkatkan kinerja model IndoBERT secara keseluruhan (Anugerah Simanjuntak dkk., 2024), sehingga mendukung pengembangan sistem yang lebih andal dan efektif dalam mengidentifikasi kalimat sarkasme dalam bahasa Indonesia.