
BAB III

METODE PENELITIAN

A. Kerangka Konsep

Gambar 3. 1 Kerangka Konsep

Keterangan:

- a. Variabel dikendalikan melalui kriteria inklusi yaitu tidak memiliki penyakit kronik dan atau infeksi dalam satu bulan terakhir dan tidak menstruasi saat pengambilan data
- b. Variabel pengganggu diteliti untuk melihat distribusi responden
- c. Variabel tidak diteliti, jenis kelamin homogen (Perempuan), enhancer dan inhibitor tidak ditetiti dan menjadi batasan penelitian

B. Hipotesis Penelitian

 Ha: Ada hubungan antara asupan protein dengan kadar hemoglobin pada remaja putri di SMAN 1 Singaparna tahun 2025

Ho: Tidak ada hubungan antara asupan protein dengan kadar hemoglobin pada remaja putri di SMAN 1 Singaparna tahun 2025

2. Ha: Ada hubungan antara asupan zat besi dengan kadar hemoglobin pada remaja putri di SMAN 1 Singaparna tahun 2025

Ho: Tidak ada hubungan antara asupan zat besi dengan kadar hemoglobin pada remaja putri di SMAN 1 Singaparna tahun 2025

C. Variabel Penelitian dan Definisi Operasional

1. Variabel Penelitian

a. Variabel terikat : Kadar Hemoglobin

b. Variabel bebas : Asupan protein dan asupan zat besi

2. Definisi Operasional

Tabel 3. 1 Definisi Operasional

No	Variabel	Definisi	Alat Ukur	Cara Ukur	Hasil	Skor
		Operasional			Ukur	Ukur
	Variabel Teril	cat				_
1.	Kadar	Jumlah	Easy	Sampel darah	Kadar	Rasio
	Hemoglobin	konsentrasi	Touch®	diambil	hemo	
		protein	GCHB	dengan	globin	
		tetramerik		metode finger	deng-	
		eritrosit (hb)		pric	an	
		yang terikat pada		kemudian di	satuan	
		senyawa porfirin		ukur	g/dL	
		besi (heme),		menggunak-		
		yang biasanya		an digital		
		diukur dalam		hemoglobin		
		satuan g/dL		meter		
		(Kosasi et al.,				
		2015).				
	Variabel Beba	as				
2.	Asupan	Rata-rata jumlah	Formulir	Wawancara	Asup-	Rasio
	Protein	asupan protein	SQ- FFQ		an	
		g/hari yang	(Semi		prote-	
		dikonsumsi dari	Quantitati		in	
		makanan dan	ve) - Food		dalam	
		minuman (Arbie	Frequency		satuan	
		and Labatjo,	Question-		gram	
		2019).	naires)		(g)	

No	Variabel	Definisi	Alat Ukur	Cara Ukur	Hasil	Skor
		Operasional			Ukur	Ukur
3.	Asupan Zat	Rata-rata jumlah	Formulir	Wawancara	Asup-	Rasio
	Besi	asupan zat besi	SQ-FFQ		an zat	
		mg/hari yang	(Semi		besi	
		dikonsumsi dari	Quantitat-		dalam	
		makanan dan	ive) -		satuan	
		minuman	Food		milig-	
		(Pratiwi, 2016)	Frequency		ram	
			Question-		(mg)	
			naires)			

D. Desain Penelitian

Penelitian ini merupakan penelitian yang bersifat analitik dengan menggunakan desain *cross sectional* yaitu suatu metode dimana peneliti melakukan pengukuran dan wawancara untuk menentukan hubungan antar variabel independen (asupan protein dan zat besi) dengan variabel dependen (kadar hemoglobin) dalam waktu yang bersamaan.

E. Populasi dan Sampel

1. Populasi

Populasi dalam penelitian ini adalah siswi kelas X SMAN 1 Singaparna Kabupaten Tasikmalaya dengan jumlah populasi 264 orang.

2. Sampel

a. Ukuran Sampel

Cara menentukan sampel menggunakan rumus Slovin dengan rumus sebagai berikut:

35

$$n = \frac{N}{1 + N.e^2}$$

Keterangan:

n : Jumlah sampel yang diperlukan

N : Jumlah populasi e : Nilai kritis (0,10)

Didapatkan hasil sebagai berikut:

$$n = \frac{264}{1 + 264.0,10^2}$$

$$n = \frac{264}{1 + 2,64}$$

$$n = \frac{264}{3,64}$$

$$n = 72,5$$

b. Teknik Pengambilan Sampel

Berdasarkan hasil perhitungan di atas sampel yang diperlukan dalam penelitian ini paling sedikit 73 siswa. Teknik pengambilan sampel di setiap kelas menggunakan teknik proportional random sampling dengan cara undian yaitu masing-masing sampel dari tiap kelas dapat diambil secara berimbang sesuai dengan populasi yang ada (Sugiyono, 2020) dengan rumus:

$$nx = \frac{N1}{N}x n$$

Keterangan:

nx : Jumlah sampel tiap kelas

n: Jumlah sampel yang diperlukan (73)

N1 : Jumlah populasi tiap kelas N : Jumlah total populasi (264) Jumlah sampel minimal yang diperlukan adalah 73 orang, untuk mengantisipasi kemungkinan adanya sampel yang memenuhi kriteria ekslusi maka jumlah sampel ditambah sebanyak 10%. Maka sampel yang akan diambil sebanyak = $73 + (10\% \times 73) = 81$ orang. Jumlah sampel tiap kelas dapat dilihat pada Tabel 3.2 sebagai berikut.

Tabel 3. 2 Jumlah Sampel Tiap Kelas

No	Kelas	Perhitungan Jumlah Sampel	Jumlah Sampel
1	X-1	$nx = \frac{23}{264} \times 81$	7
2	X-2	$nx = \frac{23}{264} \times 81$	7
3	X-3	$nx = \frac{26}{264} \times 81$	8
4	X-4	$nx = \frac{26}{264} \times 81$	8
5	X-5	$nx = \frac{22}{264}x81$	7
6	X-6	$nx = \frac{22}{264} \times 81$ $nx = \frac{22}{264} \times 81$ $nx = \frac{21}{21} \times 81$	7
7	X-7	$11X - \frac{1}{264}X$ of	7
8	X-8	$nx = \frac{20}{264} \times 81$ $nx = \frac{20}{264} \times 81$	6
9	X-9	$nx = \frac{20}{264}x81$	6
10	X-10	$nx = \frac{20}{264}x81$	6
11	X-11	$nx = \frac{20}{264} \times 81$	6
12	X-12	$nx = \frac{20}{264} \times 81$	6
		Jumlah	81

Setelah sampel pada masing-masing kelas diambil secara proporsional, maka penentuan sampel dari setiap kelasnya dilakukan secara acak dengan pengocokan nama dengan menggunakan random picker berdasarkan kriteria inklusi dan eksklusi yang ditetapkan.

c. Kriteria Inklusi

- Remaja putri kelas X SMAN 1 Singaparna tahun ajaran 2024/2025 yang bersedia menjadi responden dan diizinkan oleh orang tua dibuktikan dengan penandatangananan *Informed* consent
- 2) Remaja putri yang tidak sedang menstruasi
- Remaja putri yang tidak memiliki riwayat penyakit kronik dan atau infeksi (hemoglobinopati, thalasemia, infeksi cacing, malaria, kanker, TBC, dan HIV)
- d. Kriteria Eksklusi: Tidak hadir di sekolah saat pengambilan data

F. Instrumen Penelitian

- 1. *Informed Consent* sebagai persetujuan responden untuk diambil data beserta pengambilan darah untuk penelitian.
- 2. Formulir skrinning dan identitas untuk mengetahui identitas responden: nama, kelas, tempat tanggal lahir, usia, dan data skrinning.
- 3. Formulir *Semi Quantitative-Food Frequency Qualitative* (SQ-FFQ) digunakan untuk mengetahui pola makan sehari-hari responden dan frekuensi makan berdasarkan jenis makanan yang biasa dikonsumsi oleh remaja putri dan berisi bahan makanan yang mengandung protein dan zat besi yang sering dikonsumsi oleh remaja putri.

- 4. SPSS (*Statistical Package for the Social Sciences*) digunakan untuk analisis hubungan asupan protein dan zat besi dengan kadar hemoglobin remaja putri.
- 5. *Nutrisurvey* digunakan untuk menghitung jumlah asupan protein dan zat besi remaja putri.
- 6. Easy Touch® GCHB menggunakan finger Prick, digunakan untuk mengukur kadar hemoglobin dalam darah menggunakan darah kapiler, dikatakan anemia jika kadar hemoglobin <12 g/dL.

G. Prosedur Penelitian

- 1. Tahap Persiapan
 - a. Membuat surat permohonan data dan izin survei awal ke Dinas Kesehatan Kabupaten Tasikmalaya
 - b. Mengurus surat izin ke Wilayah Kerja Puskesmas Singaparna untuk melihat jumlah anemia pada remaja putri di SMAN 1 Singaparna
 - c. Mengurus surat izin ke sekolah SMAN 1 Singaparna
 - d. Melakukan survei pendahuluan ke lapangan sebelum melakukan penelitian
 - e. Membuat foodlist untuk SQ-FFQ.

Tahapan membuat *foodlist*:

- Melakukan survei pendahuluan melalui wawancara food recall
 1 x 24 jam atau pengamatan langsung di lapangan
- 2) Membuat daftar awal bahan makanan
- 3) Pengelompokan makanan

- 4) Menentukan porsi ukuran standar
- 5) Menyusun pilihan frekuensi konsumsi
- 6) Penyusunan formulir SQ-FFQ
- f. Penyusunan proposal
- g. Penyusunan penelitian
- h. Pengurusan *ethical clearance* kepada komisi etik Poltekkes Kemenkes Semarang
- Mengurus surat izin penelitian ke Badan Kesatuan Bangsa dan Politik (Kesbangpol), Dinas Kesehatan Kabupaten Tasikmalaya, UPTD Puskesmas Singaparna dan SMAN 1 Singaparna.
- 2. Tahap Pelaksanaan (Pengambilan Data)
 - a. Jenis dan Sumber Data
 - 1) Data Primer
 - a) Penjelasan penelitian dan pengisian informed consent
 - (1) Tenaga pelaksana: peneliti dan sepuluh orang enumerator. Enumerator merupakan mahasiswa gizi semester 8 yang telah lulus mata kuliah penilaian konsumsi pangan
 - (2) Langkah-langkah pengisian informed consent
 - (a) Peneliti membagikan informed consent
 - (b) *Informed consent* ditandatangani oleh orang tua dan keesokan harinya dibawa ke sekolah sebagai persetujuan responden mengikuti penelitian

- b) Pengumpulan formulir skrinning dan identitas sampel dengan pengisian formulir
 - (1) Tenaga pelaksana: peneliti dan sepuluh orang enumerator. Enumerator merupakan mahasiswa gizi semester 8 yang telah lulus mata kuliah penilaian konsumsi pangan
 - (2) Langkah-langkah pengisian formulir identitas data sampel
 - (a) Mengucapkan salam dan memperkenalkan diri
 - (b) Menjelaskan maksud dan tujuan
 - (c) Memohon ketersediaan responden untuk mengisi formulir skrinning dan identitas data sampel
 - (d) Memeriksa kembali semua pertanyaan apakah sudah terisi lengkap
 - (e) Selesai pengisian formulir mengucapkan terima kasih
- c) Pengumpulan data asupan makan (asupan protein dan asupan zat besi) dengan SQ-FFQ
 - (1) Tenaga pelaksana: peneliti dan sepuluh orang enumerator. Enumerator merupakan mahasiswa gizi semester 8 yang telah lulus mata kuliah penilaian konsumsi pangan

(2) Langkah-langkah wawancara SQ-FFQ

- (a) Responden diwawancara mengenai frekuensi makan sumber zat gizi protein dan zat besi selama kurun waktu tiga bulan terakhir
- (b) Buku foto makanan yang diterbitkan oleh Pusat
 Teknologi Terapan Kesehatan dan Epidemiologi
 Klinik Badan Penelitian dan Pengembangan
 Kesehatan Indonesia tahun 2014. Digunakan untuk
 membantu peneliti dalam menganalisis ukuran bahan
 makanan atau minuman yang dikonsumsi responden
 saat wawancara.
- (c) Enumerator mencatat jenis dan jumlah makanan yang dikonsumsi dalam URT
- (d) Konversi ukuran porsi yang dikonsumsi responden ke dalam ukuran berat (gram)
- (e) Entry data ke dalam software nutrisurvey untuk memperoleh asupan protein dan zat besi responden
- (f) Menghitung rata-rata asupan protein dan zat besi responden

d) Pengukuran hemoglobin

- (1) Tenaga pelaksana: petugas laboratorium puskesmas Singaparna
- (2) Alat ukur: Easy Touch® GCHB

(3) Langkah-langkah pengukuran hemoglobin

- (a) Pasang stik yang akan digunakan pada bagian atas mesin *Easy Touch*® *GCHB*
- (b) Maka akan muncul tampilan kode strip dan simbol darah "S" sebagai tanda siap digunakan
- (c) Berikan pijatan pada jari yang akan diambil darahnya
- (d) Bersihkan area penusukan menggunakan alcohol swab
- (e) Setelah kering, tusuk jari menggunakan *pen lancet* yang terpasang di *autoclick*
- (f) Ambil darah lalu letakkan pada stik Hb dan hasilnya akan keluar langsung dalam beberapa detik
- (g) Setelah darah diambil, jari yang ditusuk ditutup menggunakan *alcohol swab*.

2) Data Sekunder

Data sekunder yang diambil adalah nama dan jumlah siswi kelas X yang akan dijadikan sampel penelitian.

H. Pengolahan Data dan Analisis Data

1. Pengolahan Data

Pengolahan data merupakan salah satu dari serangkaian kegiatan penelitian setelah melakukan pengumpulan data. Data-data yang telah diperoleh kemudian diolah dengan menggunakan beberapa langkah pengolahan yaitu:

a. Editing Data (Pemeriksaan Data)

Kegiatan yang dilakukan dalam pengeditan adalah memeriksa kelengkapan seluruh data primer yang diperoleh. Data yang didapatkan tidak ada yang tidak lengkap seluruh data lengkap. Data yang diperoleh adalah data identitas responden, form SQ-FFQ, dan kadar hemoglobin

b. Entry Data (Pemasukan Data)

Data-data dimasukkan secara sistematis, urut, dan teratur agar memudahkan dalam proses penjumlahan, penyajian, dan analisis data. Analisis data menggunakan software komputer berupa Microsoft Excel dan SPSS.

c. Cleaning Data (Pembersihan Data)

Semua data yang telah dimasukkan kemudian dilakukan pengecekan kembali dan tidak ditemukan kesalahan ataupun ketidaklengkapan.

d. Tabulating (Menyusun Data)

Tabulating adalah mengelompokkan data sesuai dengan tujuan penelitian yang selanjutnya hasil data di masukan dalam tabel sesuai dengan kriteria untuk keperluan analisis.

2. Analisis Data

a. Analisis Univariat

1) Uji Normalitas Distribusi Data

Data penelitian merupakan data rasio maka harus di uji normalitas terlebih dahulu dengan menggunakan *kolmogorov smirnov*. *Kolomogorov smirnov* digunakan karena data >50. Dari hasil pengujian diperoleh data sebagai berikut:

Tabel 3. 3 Analisis Sebaran Data

Variabel	p-value	Distribusi Data
Usia	0,000	Tidak Terdistribusi
		Normal
Asupan Protein	0,200	Terdistribusi
		Normal
Asupan Zat Besi	0,000	Tidak Terdisribusi
		Normal
Kadar Hemoglobin	0,200	Terdistribusi
_		Normal

2) Tendensi Sentral

Berdasarkan hasil Tabel 3.3 untuk data yang terdistribusi normal (asupan protein dan kadar hemoglobin) tendensi sentral yang diukur adalah *mean* dan standar deviasi. Sedangkan untuk data yang tidak terdistribusi normal (usia dan asupan zat besi) tendensi sentral yang diukur yaitu median, minimum, dan maksimum

b. Analisis Bivariat

Analisis bivariat adalah analisis yang dilakukan terhadap dua variabel yang diduga berhubungan atau berkolerasi. Analisis bivariat berguna untuk mengetahui hubungan antara variabel bebas (asupan protein dan zat besi) dengan variabel terikat (kadar hemoglobin). Variabel yang telah dilakukan uji normalitas kemudian di uji hipotesis. Pengujian hipotesis variabel dalam penelitian ini disajikan dalam Tabel 3.4 berikut:

Tabel 3. 4
Uii Statistik yang Digunakan

Oji Statistik yang Digunakan				
Variabel	Distribusi	Variabel	Distribusi	Uji
Bebas	Data	Terikat	Data	Statistik
Asupan	Normal	Kadar	Normal	Product
Protein		Hemoglobin		Moment
				Pearson
Asupan	Tidak	Kadar	Normal	Spearman
Zat Besi	Normal	Hemoglobin		Rank

1) Kriteria Tingkat Kekuatan Korelasi

Pedoman untuk memberikan interpretasi kekuatan hubungan dalam uji analisis data dapat dilihat pada Tabel 3.5

Tabel 3. 5 Interpretasi Kekuatan

Nilai	Kategori
0,00-0,199	Sangat rendah
0,20-0,399	Rendah
0,40-0,599	Sedang
0,60-0,799	Kuat
0,80-0,1000	Sangat kuat

Sumber: Sugiyono, (2009)

2) Kriteria Arah Korelasi

Arah korelasi dilihat pada angka koefisien korelasi. Besarnya nilai koefisien korelasi yaitu antara +1 sampai -1. Jika bernilai positif maka korelasi kedua variabel searah, namun jika bernilai negatif maka korelasi kedua variabel berlawanan. Korelasi searah berarti jika variabel bebas meningkat, maka variabel terikat juga akan meningkat. Korelasi berlawanan berarti jika variabel bebas meningkat, maka variabel akan menurun.

3) Kriteria Signifikansi Korelasi

Varibel dikatakan ada hubungan yang signifikan, jika p-value ≤ 0.05 . Jika p-value ≥ 0.05 maka hubungan antar variabel dikatakan tidak signifikan.