BAB III

METODE PENELITIAN

3.1 Metode Penelitian

Metode penelitian yang dipakai dalam studi ini ialah metode eksperimen, sistem monitoring dan kontrol kualitas air berbasis IoT dirancang, diimplementasikan, serta diuji dalam lingkungan kolam bioflok dengan beberapa komoditas ikan. Data yangdihasilkan lalu dianalisis untuk kemudian dievaluasi efektivitas sistem dalam menjaga kualitas air sesuai kebutuhan setiap komoditas ikan.

3.2 Desain Penelitian

Desain penelitian untuk "sistem monitoring dan kontrol kualitas air beragam komoditas ikan berbasis IoT pada kolam Bioflok dapat melibatkan beberapa tahapan dan elemen berikut:

Gambar 3.1 Flowchart Penelitian

3.2.1 Studi Literatur

Langkah yang digunakan untuk mengevaluasi aspek-aspek yang terkait dengan teori-teori yang relevan yang mendukung perencanaan dan perancangan sistem. Untuk mengakses teori-teori yang mendukung, informasi dapat dikumpulkan melalui membaca berbagai sumber seperti buku, skripsi, jurnal, dan tulisan-tulisan terkait

lainnya. Dalam konteks tugas akhir ini, teori yang dianalisis mencakup berbagai karakteristik dari sensor suhu, dan sensor pH mikrokontroler ESP32 DevKit V1, perangkat lunak Arduino IDE, dan situs web.

3.2.2 Persiapan alat dan bahan

Persiapan dalam perancangan alat dibutuhkan alat serta bahan, yang berupa hardware dan software. Adapun hardware yang digunakan diantaranya;

Alat dan bahan yang digunakan pada penelitian ini adalah sebagai berikut:

- a. Laptop
- b. Solder
- c. ESP32 Dev Kit V1
- d. Termometer
- e. Citric acid
- f. Baking soda
- g. Daun Ketapang
- h. Relay
- i. Sensor Suhu DS18B20
- j. pH-4502C with probe electrode
- k. LCD 16x2
- 1. Mini Micro Submersible water pump mini DC 3V-6V

Dalam menjaga kestabilan pH air pada kolam bioflok, digunakan bahan-bahan penyesuaian pH seperti citric, baking soda, dan daun Ketapang. Untuk citric acid atau asam sitrat berfungsi sebagai bahan penurun pH karena sifat asan yang dimilikinya mampu menambah konsentrasi ion hidrogen. Sementara itu, baking soda atau natrium bikarbonat digunakan untuk menaikkan pH air, bekerja dengan menambah iot karbonat yang meningkatkan kapasitas penyangga dan menjaga pH tetap stabil.

Adapun software yang digunakan pada penelitian ini adalah sebagai berikut:

- a. Arduino IDE
- b. Google Chrome
- c. XAMPP

3.2.3 Pengujian Unit

Pengujian Unit merupakan suatu proses evaluasi untuk menentukan apakah alat ataupun perangkat bekerja dengan baik sesuai dengan spesifikasi dan tujuan yang telah ditetapkan. Proses ini melibatkan berbagai jenis tes untuk memastikan keandalan, efisiensi, dan keamanan alat tersebut. Untuk pengujian alat tersebut dapat dilakukan berbagai tahap pengembangan, mulai dari prototipe hingga produk akhir, dan sering kali melibatkan simulasi, pengujian di lapangan, serta analisis hasil uji untuk perbaikan lebih lanjut.

3.2.3.1 Pengujian Sensor Suhu

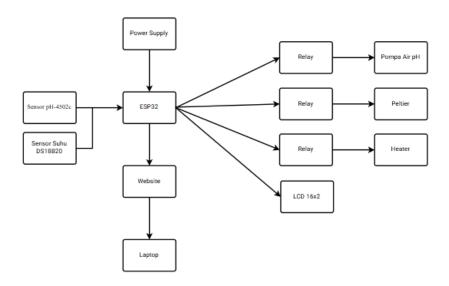
Pada proses pengujian ini sensor suhu dirancang untuk menentukan keakuratan sensor dalam membaca suhu air. Pengujian ini dilakukan dengan membandingkan suhu yang terbaca oleh sensor dengan termometer, diukur dalam satuan Celsius.

Tabel 3.1 Uji Kesesuaian Sensor Suhu

					Keterangan
No	Jenis	Sensor Suhu DS18B20	Termometer	Error	
	Cairan	(°C)	(°C)	(%)	
1.	Air Panas				
2.	Air Biasa				
3.	Air Dingin				

3.2.3.2 Pengujian Sensor pH

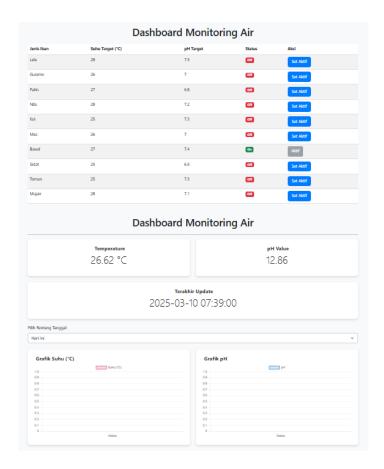
Pengujian sensor pH dilakukan untuk memastikan akurasi dan konsistensi dalam mengukur tingkat keasaman air, dengan membandingkan hasil pembacaan sensor dengan larutan pH standar dalam berbagai kondisi lingkungan.


Tabel 3.2 Tabel uji kesesuaian Sensor pH

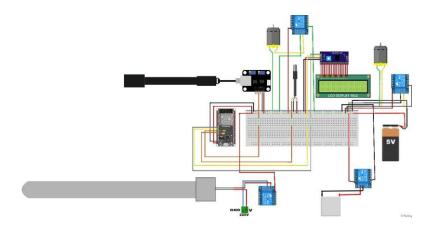
					Keterangan
No	Jenis Cairan	Sensor pH-4502C	pH meter	Error (%)	
1.	Buffer 4.01				

2.	Buffer 6.86		
3.	Buffer 9.18		

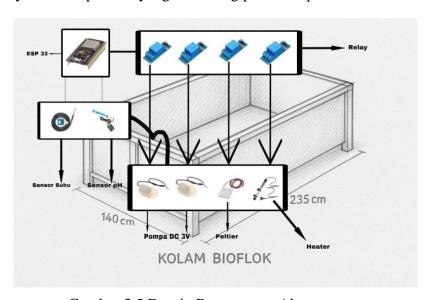
3.2.4 Perancangan Alat dan Sistem


Pada perancangan ini akan menghubungkan Sensor Suhu DS18B20, Sensor pH-4502C dengan mikrokontroller ESP32 lalu ke kolam bioflok, berikut langkah-langkah dalam perencanaan alat digambarkan dalam diagram berikut:

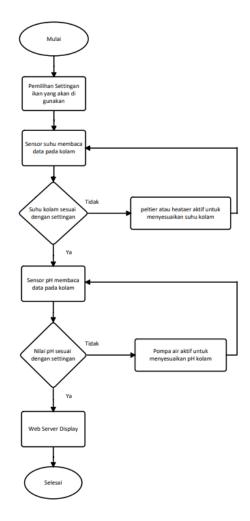
Gambar 3.2 Blok Diagram Perancangan Alat


Blok diagram diatas menggambarkan perencanaan sistem *monitoring* kualitas air kolam ikan berbasis Internet of Things (IoT) menggunakan Node MCU ESP32 sehingga menghasilkan sistem pemantauan yang dapat mengukur suhu, kadar pH dalam kolam bioflok yang dapat diakses melalui website selama terhubung koneksi

internet. Tujuan utama dari sistem ini merupakan untuk mengukur dan mengevaluasi kualitas air kolam


Gambar 3.3 User Interface pada Web

Berdasarkan pada gambar 3.3 diatas merupakan user interface yang akan digunakan pada sistem monitoring yang dapat dilihat di webserver secara realtime. Dari XAMPP.


Gambar 3.4 Skematik Alat

Berdasarkan gambar diatas merupakan rancangan mengenai semua rangkaian komponen elektronik yang dirancang untuk mengambil data suhu dan kelembapan menggunakan sensor DS18B20 dan menampilkan data tersebut pada LCD 16x2 serta pompa air mini submersible yang mendapatkan daya DC 5V, sedangkan ESP32 mendapatkan daya dari adaptor 5V yang terhubung pada setiap sensor.

Gambar 3.5 Desain Penempatan Alat

3.2.5 Pengujian Sistem

Gambar 3.5 Flowchart Pengujian Sistem

Berdasarkan *flowchart* diatas menggambarkan proses pemantauan dan pengendalian pH dalam sebuah kolam. Dimulai dari penetapan nilai pH pada kolam, kemudian Sensor membaca nilai pH air pada kolam, ketika Nilai pH pada kolam lebih dari yang ditetapkan maka pompa diaktifkan untuk menurunkan pH air kolam. Jika nilai pH pada kolam kurang dari yang ditetapkan maka pompa air penambah pH

menyala. Serta jika kondisi suhu pada kolam ikan kurang dari 20°C maka Termostat sebagai heater menyala agar kondisi kolam tetap stabil, dan jika kondisi suhu pada kolam lebih dari 30°C maka peltier menyala untuk menurunkan suhu pada kolam. Nilai pH, suhu dan pembacaa oksigen terlarut akan ditampilkan pada *website* yang dapat diakses melalui website secara online, dengan mengikuti flowchart ini, sistem dapat menjaga nilai pH air kolam sesuai dengan yang diinginkan dengan menyalakan pompa yang tepat untuk menaikkan atau menurunkan pH sesuai kebutuhan.

3.2.5.1 Pengujian Sistem Kontrol

Sistem kontrol otomatis yang dirancang menyalakan pompa dan perangkat lainnya berdasarkan kondisi pH dan suhu air diuji dalam kondisi lingkungan nyata.

Tabel 3.3 Pengujian Sistem Kontrol

Skenario Pengujian	Metode Pengujian	Hasil Pengujian	Keterangan
Permintaan settingan	Sistem dapat bekerja		
beberapa jenis ikan	sesuai permintaan		
	settingan jenis ikan		
Sensor pH	Pompa air hidup untuk		
mendeteksi nilai pH	mengkontrol kondisi air		
tidak sesuai dengan	pada kolam		
settingan ikan			
I	1		ı

Data settingan dapat	Data settingan beberapa	
disimpan di server	jenis ikan dapat	
	disimpan didalam	
	server dan dapat	
	digunakan ketika ingin	
	digunakan ke dalam	
	alat.	
Sensor Suhu	Sistem aktif untuk	
mendeteksi nilai	mengendalikan nilai	
suhu tidak sesuai	suhu air pada kolam	
dengan settingan		
ikan		
Pengujian kinerja	Alat dimatikan,	
alat saat memulai	kemudian dinyalakan	
perintah	kembali untuk	
	menganalisa ke andalan	
	alat	

3.2.5.2 Pengujian Komunikasi IoT

Komunikasi antara ESP32 dan XAMPP di uji untuk memastikan data dapat dikirim dan diterima dengan lancar. Hasil menunjukkan bahwa sistem mampu mengirim data dalam interval waktu yang telah ditentukan.

Tabel 3.4 Uji Parameter dalam Pengiriman Data

Skenario Pengujian	Metode Pengujian	Indikator	Keterangan
		Keberhasilan	
Keberhasilan	Kirim data dari	Data muncul di	
pengiriman data	ESP32 ke XAMPP	database	
Ketepatan data	Membandingkan data	Data sesuai dengan	
	sensor asli dengan	apa yang di	
	yang tersimpan	tampilkan pada	
		serial monitor	
Respons Server	Cek respon HTTP	Pada serial monitor	
	server saat ESP32	menampilkan Data	
	sedang mengirim	terkirim dan Data	
	data	tersimpan	
Stabilitas koneksi	Kirim data selama 1	Semua data	
	jam tanpa henti	tersimpan tanpa	
		error	

3.2.5.3 Pengujian Sistem Tampilan Data

Pada sub bab ini dilakukan pengujian terhadap tampilan data pada LCD 2x16 dan web *interface* berbasis XAMPP. Pengujian ini bertujuan untuk memastikan bahwa data suhu dan pH yang dikirim dari ESP32 dapapt ditampilkan dengan benar, *real-time*, serta mudah dibaca oleh pengguna.

3.2.5.3.1 Pengujian Tampilan LCD 2x16

Pengujian tampilan pada LCD 2x16 dilakukan dengan tujuan untuk memastikan bahwa data sensor suhu dan pH dapat ditampilkan dengan akurat, cepat, dan jelas. Pengujian ini dilakukan dalam beberapa scenario, termasuk uji akurasi data, uji kecepatan pembaruan, dan uji keterbacaan tampilan dalam berbagai kondisi.

Tabel 3.5 Uji kesesuaian LCD 2x16

Skenario Pengujian	Metode Pengujian	Indikator	Keterangan
		Keberhasilan	_
Ketepatan data	Membandingkan data	Selisih <0.1°C &	
	di LCD dengan data	0.1 pH	
	asli sensor		
Keterlambatan	Menghitung waktu	LCD menampilkan	
tampilan	dari sensor membca	data < 1 detik	
	hingga muncul di		
	LCD		
Kejelasan tampilan	Teks terbaca jelas	Tampilan dapat	
	dalam berbagai	dibaca dengan jelas	
	kondisi pencahayaan		
Respons perubahan	Mengubah kondisi	LCD menampilkan	
data	air, untuk melihat	perubahan nilai	
	perubahan tampilan	sesuai interval	
	LCD untuk	waktu yang telah	
	memperbarui nilai	diprogram	

3.2.5.3.2 Pengujian Tampilan Web Interface

Pengujian tampilan data pada web *interface* bertujuan untuk memastikan bahwa data sensor dan pH yang dikirim oleh ESP32 dapat diterima, disimpan di database MySQL, dan ditampilkan dengan benar dalam web dalam bentuk tabel dan grafik, selain untuk menampilkan data yang telah diterima oleh sever, web *interface* berfungsi sebagai *dashboard* untuk mengubah *settingan* ikan yang telah dibuat sebelumnya.

Tabel 3.5 Uji Kesesuaian web *Interface*

Skenario Pengujian	Metode Pengujian	Indikator	Keterangan
		keberhasilan	
Tampilan Data	Web menampilkan	Data sensor muncul	
Sensor	suhu dan pH secara	pada tabel yang	
	real-time	telah disediakan	
Pergantian settingan	Pilih jenis ikan lalu	Web menampilkan	
ikan	simpan	perubahan settingan	
		ikan	
Penyimpanan Data	Data sensor	Data tersimpan di	
	tersimpan ke	tabel data_sensor	
	database MySQL		
Pengambilan Data	ESP32 mengambil	ESP32 menerima	
	<i>settingan</i> ikan dari	settingan terbaru.	
	database		

3.2.5.4 Pengujian Sistem Respons Aktruator dan Performa

Pengujian performa dan respon aktuator bertujuan untuk mengevaluasi kecepatan, ketepatan, serta efektivitas kerja aktuator dalam sistem monitoring dan kontrol kualitas air berbasis IoT. Aktuator yang digunakan dalam sistem ini meliputi pompa air mini DC, heater air, dan peltier yang dikendalikan melalui relay berdasarkan

parameter suhu dan pH yang terdeteksi oleh sensor. Pengujian ini dilakukan untuk memastikan bahwa perangkat dapat merespons perubahan kondisi air dengan cepat dan sesuai dengan parameter yang telah ditentukan.

Tabel 3.6 Uji Performa dan Respon Aktuator

		<u> </u>	
Skenario Pengujian	Metode Pengujian	Indikator Keberhasilan	Keterangan
Respon pompa air	Menurunkan atau	Pompa air menyala	
DC terhadap pH	menaikkan pH air	dan bekerja sesuai	
	hingga melewati	dengan program	
	batas normal untuk	yang telah dibuat	
	mengamati apakah pompa air aktif		
Respon heater	Menurunkan suhu	Heater menyala	
terhadap suhu air	air secara manual	ketika suhu turun di	
•	untuk mengamati	bawah batas	
	heater aktif	minimum dan mati	
		saat suhu normal	
Respon Peltier	Meningkatkan suhu	Peltier menyala	
terhadap suhu air	air secara manual	ketika suhu di atas	
_	untuk mengamati	batas maksimum	
	peltier aktif	dan mati saat suhu	
		normal	
Kecepatan respon	Mengukur waktu	Waktu respon <5	
sistem	yang dibutuhkan dari	detik menunjukkan	
	saat perubahan	sistem bekerja	
	sensor terdeteksi	dengan baik	
	hingga aktuator		
	mulai bekerja		

3.2.6 Pengambilan Data

Metode yang digunakan dalam penelitian ini adalah dengan menguji kinerja alat sensor pH menggunakan mikrokontroler pada bioflok. Data dikumpulkan melalui pembacaan kadar keasaman air dan suhu air oleh sensor, kemudian hasilnya ditampilkan pada layar LCD.

3.2.7 Analisis Data

Setelah alat diuji, data yang diperoleh akan diorganisir ke dalam tabel yang telah ditentukan, selanjutnya nilai yang dihasilkan oleh sensor dibandingkan dengan nilai dari alat ukur yang lain. Langkah ini bertujuan untuk menguji dan mengukur tingkat kesalahan dengan menghitung presentase error. Data tersebut kemudian akan dianalisis dan diolah untuk menghasilkan kesimpulan berdasarkan hasil percobaan.

3.3 Waktu dan Tempat Penelitian

3.3.1 Waktu penelitian

Tabel 3.7 Matriks Waktu penelitian

			Tahun 2024		Tahun 2025		25	
No	Kegiatan	Sep	Okt	Nov	Des	Jan	Feb-Mar	April
1.	Penentuan Tema							
2.	Studi literatur							
3.	Persiapan alat dan bahan							
4.	PengujianUnit							
5.	Perancangan alat dan Sistem							
6.	Pengujian Sistem							
7,	Pengambilan Data							
8.	Analisis Data							

Pada tabel 3.7 menunjukkan matriks waktu pelaksanaan penelitian yang akan dilakukan terdiri dari 8 tahapan utama. Untuk pelaksanaan penelitian ini dirancang dalam rentang waktu September 2024 sampai April 2025.

3.3.2 Tempat penelitian

Tempat penelitian dilaksanakan di Kabupaten Pangandaran

3.4 Rencana Pengujian Sistem

Rencana Pengujian Sistem ini mencakup evaluasi menyeluruh terhadap setiap komponen dan keseluruhan integrasi, termasuk pengujian akurasi, presisi, respons waktu, dan ketahanan untuk memastikan bahwa sistem berfungsi dengan optimal dalam berbagai kondisi operasional. Serta untuk pengujian sistem ini dilakukan untuk menguji kekonsistenan sistem dan alat pada objek penelitian, Ketika pengaturan pertama dilakukan untuk budidaya ikan, maka sistem dan alat tersebut otomatis berubah untuk ikan pada satu periode budidaya ikan, dan menguji keandalan alat.

Tabel 3.8 Pengujian Sensor Suhu pada Air Suhu Panas

Jam	Percobaan	Sensor	Termometer	Selisih (°C)	Error (%)
	Ke-	DS18B20	(°C)		
		(°C)			
07.00	1				
10.00	2				
13.00	3				
17.00	4				
20.00	5				
23.00	6				
05.00	7				

⁽a) $\%error = \frac{hasil\ nilai\ Sensor - hasil\ nilai\ thermometer}{hasil\ nilai\ pH\ meter} x\ 100\%$

Tabel 3.9 Pengujian Sensor Suhu pada Air Suhu Normal

Jam	Percobaan	Sensor	Termometer	Selisih (°C)	Error (%)
	Ke-	DS18B20	(°C)		
		(°C)			
07.00	1				
10.00	2				
13.00	3				
17.00	4				
20.00	5				
23.00	6				

⁽b) 100% - rata-rata error

05.00	7				
Rata - rata					

(a) $\%error = \frac{hasil nilai Sensor - hasil nilai thermometer}{hasil nilai pH meter} x 100\%$

(b) 100% - rata-rata error

Tabel 3.10 Pengujian Sensor Suhu pada Air Suhu Dingin

Jam	Percobaan	Sensor	Termometer	Selisih (°C)	Error (%)
	Ke-	DS18B20	(°C)		
		(°C)			
07.00	1				
10.00	2				
13.00	3				
17.00	4				
20.00	5				
23.00	6				
05.00	7			_	
		Rata - rata			

⁽a) $\%error = \frac{hasil nilai Sensor - hasil nilai thermometer}{hasil nilai pH meter} x 100\%$

(b) 100% - rata-rata error

Pada tabel 3.8, tabel 3.9, tabel 3.10 merupakan tabel pengujian unit untuk sensor DS18B20 yang akan dilakukan dengan 3 objek yang berbeda yaitu dengan menggunakan air suhu panas, air suhu normal, air suhu dingin, dilakukannya pengujian ini untuk melihat keandalan dari sensor tersebut.

Tabel 3.11 Pengujian Sensor pH-4502C dengan Larutan Buffer 4.01

Jam	Percobaan	Sensor pH	pH Meter	Selisih	Error (%)
	Ke-				
07.00	1				
10.00	2				
13.00	3				
17.00	4				
20.00	5				
23.00	6				
05.00	7				
Rata - rata					

(a)
$$\%error = \frac{hasil\ nilai\ Sensor-hasil\ nilai\ pH\ meter}{hasil\ nilai\ pH\ meter} x\ 100\%$$

(b) 100% - rata-rata error

Tabel 3.12 Pengujian Sensor pH-4502C dengan Larutan Buffer 6.86

Jam	Percobaan	Sensor pH	pH Meter	Selisih	Error (%)
	Ke-				
07.00	1				
10.00	2				
13.00	3				
17.00	4				
20.00	5				
23.00	6				
05.00	7				
Rata - rata					

⁽a) $\%error = \frac{hasil\ nilai\ Sensor - hasil\ nilai\ pH\ meter}{hasil\ nilai\ pH\ meter} x\ 100\%$

(b) 100% - rata-rata error

Tabel 3.13 Pengujian Sensor pH-4502C dengan Larutan Buffer 9.18

Jam	Percobaan	Sensor pH	pH Meter	Selisih	Error (%)
	Ke-				
07.00	1				
10.00	2				
13.00	3				
17.00	4				
20.00	5				
23.00	6				
05.00	7				
Rata - rata					

⁽a) $\%error = \frac{hasil\ nilai\ Sensor - hasil\ nilai\ pH\ meter}{hasil\ nilai\ pH\ meter} x\ 100\%$

(b) 100% - rata-rata error

Pada tabel 3.11, tabel 3.12, tabel 3.13 merupakan tabel pengujian unit untuk sensor pH-4502C yang akan dilakukan dengan 3 objek yang berbeda yaitu dengan menggunakan larutan buffer 4.01 larutan buffer 6.86, larutan buffer 9.18.

Dilakukannya pengujian ini untuk melihat keandalan dari sensor tersebut pada kondisi air asam maupun basa.

Tabel 3.14 Pengujian Sistem Internet of Things

Skenario	Metode Pengujian	Hasil Pengujian	Keterangan
Pengujian			
Permintaan	Sistem dapat bekerja		
settingan beberapa	sesuai permintaan		
jenis ikan	settingan jenis ikan		
Sensor pH	Pompa air hidup		
mendeteksi nilai	untuk mengkontrol		
pH tidak sesuai	kondisi air pada		
dengan settingan	kolam		
ikan			
Data settingan	Data settingan		
dapat disimpan di	beberapa jenis ikan		
server	dapat disimpan		
	didalam sever dan		
	dapat digunakan		
	ketika ingin		
	didownload ke dalam		
	alat		
Sensor Suhu	Sistem aktif untuk		
mendeteksi nilai	mengendalikan nilai		
suhu tidak sesuai	suhu air pada kolam		
dengan settingan			
ikan			

Pada tabel 3.14 merupakan tabel untuk dilakukannya pengujian sistem

Internet of Things yang dilakukan dengan 4 pengujian untuk melihat seberapa baik
komunikasi Internet of Things yang dilakukan pada penelitian ini