BAB II

LANDASAN TEORI

2.1 Landasan Teori

2.1.1 Pengertian Jabar Quick Response

Pemerintah Provinsi Jawa Barat meluncurkan program Jabar *Quick Response* (JQR) yang kreatif untuk merespons dengan cepat berbagai permasalahan masyarakat. Meskipun JQR tidak memiliki kerangka hukum yang sangat jelas, penerapannya didasarkan pada sejumlah prinsip hukum yang lebih umum, seperti:

1. (Undang-Undang Nomor 25 Tahun 2009 tentang Pelayanan Publik, 2009)

Undang-undang ini mengatur penyampaian layanan publik yang berkualitas tinggi, tepat waktu, mudah digunakan, dan dengan harga yang wajar. Untuk melayani masyarakat dengan cepat dan efisien, JQR mematuhi nilai-nilai ini. Salah satu tanggung jawab utama Jabar *Quick Response*, yaitu menangani keluhan publik, juga diatur oleh regulasi ini.

 (Peraturan Presiden Republik Indonesia Nomor 76 Tahun 2013 tentang Pengelolaan Pengaduan Pelayanan Publik, 2013)

Prinsip umum untuk menangani keluhan pelayanan publik, termasuk standar pelayanan minimum, prosedur pengaduan, dan penyelesaian keluhan, diatur dalam Peraturan Presiden ini.

3. Peraturan Daerah Provinsi Jawa Barat

Jabar *Quick Response* adalah cara untuk menerapkan strategi regional yang lebih komprehensif, yang dijelaskan dalam sejumlah peraturan daerah provinsi.

Jabar *Quick Response* didukung oleh beberapa landasan hukum yang lebih besar, meskipun kurang memiliki perlindungan hukum yang sangat tepat. Ini memungkinkan Jabar *Quick Response* untuk melayani masyarakat dengan sukses dan efisien (Anwar & Rustandi, 2023).

2.1.2 Analisis Sentimen

Salah satu aplikasi *Natural Language Processing* (NLP) yang paling terkenal adalah analisis sentimen. Subjek ilmiah NLP mempelajari bagaimana cara membuat komputer berfungsi dan berpikir seperti manusia. Di dalam kecerdasan buatan terdapat bidang pemrosesan bahasa alami, atau NLP. Dalam perkembangan data mining, *Artifical Intellegence* (AI) adalah salah satu dari empat subbidang penambangan data, bersama dengan pengambilan informasi, basis data, dan statistik. Dalam penerapannya, *AI* juga membutuhkan *machine learning* sebagai teknik untuk menyelesaikan. Penggunaan *machine learning* bertujuan untuk menggantikan peran manusia dalam pengambilan keputusan. Berbeda dengan manusia, *machine learning* tidak melibatkan emosi, sehingga setiap keputusan yang dihasilkan sepenuhnya didasarkan pada data yang telah diproses. (Irwansyah Saputra dan Dinar Ajeng Kristiyanti, 2022).

Analisis sentimen adalah prosedur komputasi yang mengelola, memahami, dan mengklasifikasikan emosi sebagai positif atau negatif dengan menggunakan teknik analisis teks pada data tekstual. Analisis sentimen adalah teknik yang umum digunakan karena meningkatnya permintaan dari individu atau kelompok untuk memahami sudut pandang orang lain. Dataset yang digunakan memiliki dampak pada analisis juga karena akan ditangani dengan cara yang berbeda (Widayat,

2021). Analisis sentimen menargetkan korporasi serta individu. Analisis sentimen atau yang dikenal sebagai penambangan opini adalah praktik menilai perasaan pengguna melalui pemeriksaan tulisan mereka. Analisis sentimen tidak terbatas pada karakter, tetapi juga dapat digunakan untuk menganalisis masalah dengan program, perusahaan, barang, aplikasi, dan topik lain yang terbuka untuk diskusi publik (Herlinawati dkk., 2020). Analisis sentimen memiliki manfaat dalam menghemat waktu dan usaha saat melakukan penelitian dengan banyak data. Berikut contoh penerapan analisis sentimen:

- Di bidang bisnis, contohnya adalah untuk mengetahui bagaimana tanggapan masyarakat terhadap reputasi suatu merek produk baru, sehingga merek tersebut dapat ditingkatkan.
- Di ranah politik, contohnya adalah untuk mengetahui seberapa populer seorang tokoh, sehingga dapat memberikan wawasan lebih mengenai tokoh yang bersangkutan.
- 3. Berbagai program seperti vaksinasi, penanganan COVID-19, pemilihan presiden, dan lainnya dapat dianalisis untuk memberikan masukan yang berguna dalam menyempurnakan kebijakan pemerintah terkait.

Secara garis besar, proses analisis sentimen terdiri dari lima tahapan utama, yaitu *crawling data, pre-processing, feature selection, classification*, dan *evaluation*. Data tidak terstruktur dapat diorganisir melalui analisis sentimen. Di antara keuntungan analisis sentimen adalah kemampuannya untuk mengevaluasi dan memberikan ide untuk berbagai bidang. Analisis sentimen merupakan sebuah alat yang bermanfaat untuk mengevaluasi pernyataan, peristiwa, maupun komentar

yang bersifat kontroversial. Selain itu, hasil dari analisis ini dapat memberikan wawasan bagi perusahaan, figur publik, maupun pemerintah dalam merumuskan langkah atau keputusan selanjutnya. (Natasuwarna, 2020).

Terdapat beberapa jenis analisis sentimen yaitu emotion detection, aspectbased sentiment analysis, dan fine grand sentiment analysis. Fine sentiment analysis merupakan jenis analisis sentimen yang memberikan penilaian secara lebih terperinci dan biasanya diterapkan dalam bidang e-commerce. Emoticon detection adalah jenis analisis yang dimaksudkan untuk memahami perasaan seperti kebahagiaan, kesedihan, kemarahan, dan lainnya yang terdapat dalam sebuah pesan. Aspect-based sentiment analysis, Analisis seperti ini dimanfaatkan untuk mengenali berbagai faktor yang memengaruhi opini serta penilaian yang diberikan oleh klien (Geofanni Nerissa Arviana, 2021a)

Analisis sentimen sebenarnya adalah proses multi-tahap yang dimulai dengan pengumpulan data dari sumber yang telah ditentukan (sosial media, website, dll), menggunakan metode seperti web crawler atau web scraper untuk menarik data. Selanjutnya, data tersebut dapat diolah menggunakan algoritma seperti Naive Bayes atau SVM untuk membangun model analisis sentimen. Langkah selanjutnya adalah tahap evaluasi, yang menentukan apakah model tersebut memadai atau masih perlu perbaikan. Penelitian sentimen oleh karena itu merupakan alat yang krusial untuk meramalkan tren pasar, mengukur opini publik, dan mendukung perusahaan serta organisasi dalam mengambil keputusan strategis (Geofanni Nerissa Arviana, 2021a).

2.1.3 Natural Language Processing (NLP)

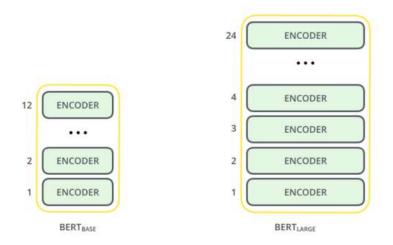
Natural Language Processing (NLP) merupakan cabang penting dari ilmu komputer yang terletak di antara linguistik dan pembelajaran mesin. Proses ini memerlukan sejumlah besar perhitungan agar komputer dapat memahami pernyataan yang ditulis dalam bahasa manusia (Aditya Jain, 2018). Tujuan dari Natural Language Processing (NLP) adalah untuk mengurangi beban kerja pengguna dan memenuhi kebutuhan akan komunikasi bahasa yang murni antara manusia dan komputer. NLP memberikan manfaat bagi pengguna yang tidak memiliki waktu untuk menguasai bahasa baru karena tidak semua pengguna mungkin merupakan penutur asli dari bahasa yang spesifik untuk mesin (Khurana dkk., 2023).

Natural Language Processing (NLP) secara umum terdiri dari dua komponen utama, yaitu Natural Language Understanding dan Natural Language Generation, yang masing-masing berfungsi untuk memahami serta menghasilkan teks. NLP berperan sebagai fondasi utama dalam sistem pengenalan bahasa, seperti yang digunakan oleh Siri (Apple) maupun Google. Sistem NLP dapat dimulai dengan menentukan struktur dan sifat morfologis kata, seperti makna atau part-of-speech, pada tingkat kata setelah itu, dapat memeriksa urutan kata, tata bahasa, dan makna seluruh kalimat di tingkat kata dan tingkat kalimat. Dalam konteks tertentu, satu kata atau kalimat mungkin memiliki arti atau konotasi berbeda yang terhubung ke banyak kata atau kalimat lain dalam konteks (Khurana dkk., 2023). ada beberapa area utama pada NLP, diantaranya:

- 1. Question Answering System (QAS), adalah kemampuan komputer untuk merespons pertanyaan dari pengguna. Dalam hal ini, pengguna mengajukan pertanyaan langsung kepada komputer daripada memasukkan kata kunci yang terkait dengan jawaban yang diinginkan.
- 2. Summarization, Ini memungkinkan pengguna untuk mengubah dokumen teks yang panjang menjadi slide presentasi dengan merangkum serangkaian email atau makalah
- 3. *Machine Translation*, salah satu alat yang telah menerapkan bidang studi ini adalah *Google Translate*, yang dapat menerjemahkan teks dari satu bahasa ke bahasa lain dan memahami bahasa manusia sebagai hasilnya.
- 4. *Speech Recognition*, adalah bidang NLP yang sangat menantang. Ini disebabkan oleh fakta bahwa komputer perlu memahami bahasa manusia, yang sering kali disampaikan di bidang ini melalui pertanyaan dan instruksi.
- 5. Document Classification merupakan salah satu bidang dalam NLP yang paling berhasil. Tugas utamanya adalah menentukan kategori atau tempat yang paling sesuai untuk dokumen baru yang dimasukkan ke dalam sistem. Pendekatan ini sangat bermanfaat dalam berbagai aplikasi seperti penyaringan spam, klasifikasi artikel berita, dan ulasan film.

Natural Language Processing (NLP) merupakan pendekatan yang sangat relevan untuk menganalisis data dari media sosial seperti Twitter. Hal ini karena Twitter menyediakan data teks dalam jumlah besar yang mencerminkan opini dan respons masyarakat secara real-time. Dengan NLP, teknologi ini dapat

mengekstraksi makna dari teks singkat yang umumnya memiliki batasan karakter, seperti *tweet*.


Namun, penerapan NLP pada teks Twitter berbahasa Indonesia memiliki tantangan tersendiri. Karakteristik bahasa Indonesia di media sosial cenderung informal, sering menggunakan bahasa gaul, singkatan, atau bahkan campuran bahasa. Selain itu, sumber daya NLP untuk Bahasa Indonesia masih terbatas dibandingkan dengan Bahasa Inggris, sehingga diperlukan model dan *preprocessing* yang disesuaikan secara lokal.

2.1.4 Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) merupakan metode machine learning berbasis arsitektur Transformer yang digunakan untuk pre-training dalam pemrosesan bahasa alami (NLP), dan dikembangkan oleh Google. BERT pertama kali diperkenalkan oleh Devlin dan rekan-rekannya pada tahun 2019 (Devlin dkk., 2019), Google sendiri telah menerapkan BERT untuk memahami maksud dari penelusuran pengguna secara lebih akurat. Sebelumnya, teknik representasi kata seperti GloVe, word2vec, dan FastText digunakan, namun masih memiliki keterbatasan. Sebagai solusi atas permasalahan tersebut, hadir ELMo (bidirectional LSTM) yang memanfaatkan konteks kata sebelum dan sesudah untuk membentuk word embedding. Selanjutnya, BERT diperkenalkan dengan performa yang lebih unggul dibanding model-model sebelumnya. BERT dirancang untuk mempelajari representasi dua arah dari teks yang tidak diberi label, dengan memperhatikan konteks di sebelah kiri dan kanan setiap kata pada semua lapisan model. Model BERT yang telah melalui tahap pre-

training ini kemudian dapat disesuaikan (*fine-tuning*) untuk berbagai tugas NLP seperti klasifikasi teks, penjawaban pertanyaan, dan terjemahan, hanya dengan menambahkan satu lapisan output tambahan (Devlin dkk., 2019).

Menurut (Devlin dkk., 2019) BERT model *architecture* dibentuk dari *multilayer bi-directional Transformer encoder.* terdapat 2 bentuk model:

Gambar 2.1 Arsitektur BERT (Devlin dkk., 2019)

- 1. BERT BASE: model ini dibangun dari 12 *Transformer block*, 12 *Attention layer* dan 768 *hidden layers*.
- 2. BERT LARGE: model ini memiliki *layer* dan *attention layer* yang lebih banyak dari BERT BASE untuk mendapatkan hasil yang lebih baik yaitu 24 *transformer block*, 16 *attention head* dan 1024 *hidden layer*.

BERT dapat dimanfaatkan dalam dua tahap, yaitu *pre-training* dan *fine-tuning*. Pada tahap *pre-training*, model dilatih menggunakan data tanpa label untuk menyelesaikan berbagai tugas awal. Sedangkan pada tahap *fine-tuning*, BERT memulai dengan parameter yang sudah diperoleh dari proses pelatihan sebelumnya,

lalu seluruh parameter tersebut disesuaikan kembali menggunakan data berlabel. Proses ini memungkinkan BERT untuk menyelesaikan berbagai tugas NLP seperti klasifikasi teks, penjawaban pertanyaan, dan pengenalan entitas bernama (*Named Entity Recognition*) (Devlin dkk., 2019).

a. Pre-Training

Pre-training BERT dapat digunakan untuk menyelesaikan tugas unsupervised seperti Masked model languange dan next sentence prediction (Devlin dkk., 2019).

1. Masked languange Model

Masked Languange Model digunakan untuk menyembunyikan atau menutupi kata-kata acak yang tidak mungkin dalam kalimat. [MASK] token digunakan untuk menggantikan 15% kata dalam setiap urutan kata sebelum dimasukkan ke BERT. Model kemudian akan mencoba memprediksi kata tersebut nilai asli menggunakan konteks yang disediakan oleh kata lain yang tidak ditutup dengan [MASK] dalam urutan kata.

2. Next Sentence Prediction

Next Sentence Prediction (NSP) merupakan salah satu metode yang digunakan untuk memprediksi apakah suatu kalimat merupakan kelanjutan dari kalimat sebelumnya. Dalam proses pelatihan BERT, model diberikan pasangan kalimat dan dilatih untuk menentukan apakah kalimat kedua benar-benar merupakan kelanjutan dari kalimat pertama dalam dokumen asli. Selama pelatihan, 50% dari pasangan kalimat tersebut memang berasal

dari urutan sebenarnya dalam dokumen, sementara 50% sisanya terdiri dari kalimat kedua yang diambil secara acak dari korpus. Asumsinya, kalimat yang dipilih secara acak tidak memiliki kesinambungan makna dengan kalimat pertama.

Dalam tahap *pre-training*, BERT memanfaatkan arsitektur *transformer* yang sangat andal. Arsitektur ini memungkinkan model untuk mengatasi tantangan dalam memahami hubungan kata-kata yang berjauhan dalam suatu teks melalui penggunaan *attention mechanism* yang efisien. Pada struktur *transformer*, terdapat beberapa lapisan yang disebut *encoder*, yang berfungsi untuk menerima input berupa teks dan menghasilkan representasi kontekstual yang mendalam dan bermakna.

Setelah melalui tahap *pre-training*, BERT dapat disesuaikan lebih lanjut melalui proses *fine-tuning* untuk menangani tugas-tugas spesifik. *Fine-tuning* ini melibatkan pelatihan ulang model menggunakan data yang telah diberi label, sesuai dengan kebutuhan tugas tertentu. Sebagai contoh, model BERT yang sebelumnya telah dilatih secara umum dapat diadaptasi untuk berbagai keperluan seperti analisis sentimen, pemrosesan bahasa alami, pengenalan entitas bernama (*Named Entity Recognition*), dan tugas-tugas NLP lainnya.

Tahap *pre-training* pada BERT memungkinkan model untuk mempelajari representasi teks yang lebih mendalam serta memahami struktur dan konteks bahasa secara lebih efektif. Kemampuan ini telah

memberikan kemajuan yang signifikan dalam berbagai jenis tugas pemrosesan bahasa alami.

b. *Fine-Tuning*

Model *pre-training* BERT yang telah dilatih dapat digunakan untuk menyelesaikan tugas NLP lainnya dengan menambahkan *layer* yang sesuai dengan tugas yang ingin di selesaikan pada model yang ada. BERT dapat digunakan untuk klasifikasi teks, *sentiment analysis*, *question-answering*, *named entity recognition* dan tugas *natural languange* lainnya (Devlin dkk., 2019).

Model BERT yang telah melalui pelatihan umum kemudian dimuat kembali, dan bagian lapisan akhirnya disesuaikan agar cocok dengan tugas tertentu. Biasanya, lapisan akhir BERT yang dikenal sebagai *classifier layer* akan diganti dengan lapisan klasifikasi baru yang sesuai dengan jumlah kelas pada tugas yang ingin diselesaikan. Setelah itu, model dilatih menggunakan metode pembelajaran terawasi, seperti *backpropagation* dan *stochastic gradient descent*, untuk mengurangi tingkat kesalahan dalam menyelesaikan tugas yang ditargetkan (Devlin dkk., 2019).

2.1.4.1 IndoBERT

IndoBERT merupakan pre-trained model yang dilatih berdasarkan arsitektur BERT khusus dalam dataset Bahasa Indonesia yang disebut INDOLEM. Dataset INDOLEM sendiri terdiri dari beberapa tugas untuk Bahasa Indonesia, seperti morfo-sintaks yang mengarah pada tugas grammatical atau aturan bahasa (terdiri dari NER dan POS Tagging), semantik, dan wacana. Model IndoBERT dilatih dan dievaluasi menggunakan dataset dari INDOLEM dan mengungguli hasil

percobaan dengan algoritma lainnya yaitu MBERT, dan Bi-LSTM-CRF (Koto dkk., 2021).

2.1.4.2 Multilingual BERT

Mulilingual BERT (MBERT) merupakan pengembangan dari model bahasa tunggal BERT yang telah dilatih menggunakan *corpura monolingual* dalam 104 bahasa. MBERT disempurnakan menggunakan data pelatihan khusus dari satu bahasa dan dilakukan proses evaluasi dalam bahasa yang berbeda, sehingga memungkinan untuk digunakan dalam lintas bahasa, dan bahkan MBERT mampu melakukan tugas generalisasi lintas bahasa dengan baik. Model MBERT juga sudah dilatih menggunakan kamus dalam Bahasa Indonesia sehingga dapat digunakan untuk tugas dalam Bahasa Indonesia (Koto dkk., 2021).

2.1.4.3 IndoROBERTa

IndoROBERTa merupakan model bahasa berbasis arsitektur RoBERTa yang telah disesuaikan untuk bahasa Indonesia. RoBERTa sendiri adalah singkatan dari "Robustly Optimized BERT Pretraining Approach", yang merupakan pengembangan dari model BERT dengan optimasi pada proses pretraining, seperti penggunaan data yang lebih besar, penghapusan token segmentasi, dan pelatihan dengan batch size yang lebih besar.

Dalam konteks bahasa Indonesia, IndoROBERTa dikembangkan untuk mengatasi keterbatasan model *multilingual* yang seringkali kurang optimal dalam memahami nuansa bahasa lokal. Model ini dilatih menggunakan korpus besar berbahasa Indonesia, seperti Indo4B, yang mencakup berbagai domain teks untuk

memastikan representasi bahasa yang kaya dan kontekstual (Richardson & Wicaksana, 2022).

2.1.5 Pengujian

Pengujian dengan *Confusion Matrix* adalah langkah krusial dalam membangun model analisis sentimen handal. Dengan memahami konsep ini, bisa memastikan bahwa model *Confusion Matrix* dapat memberikan hasil yang akurat dan dapat diandalkan.

Confusion Matrix adalah sebuah metode yang digunakan dalam evaluasi kinerja model klasifikasi untuk menganalisis seberapa baik model tersebut melakukan klasifikasi pada dataset pengujian. Confusion Matrix memberikan gambaran tentang seberapa baik atau buruk model dalam mnengklasifikasikan data (Hemmatian, 2019).

Tabel 2.1 Confusion Matrix

Predicted	Actual Values				
Values	True Negative (TN)	False Positif (FP)			
	False Negative (FN)	True Positif (TP)			

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precission = \frac{TP}{TP+FF}$$

$$Recall = \frac{TP}{TP+FN}$$

Keterangan:

a. True Positive (TP)

Merupakan jumlah sampel positif yang diklasifikasikan dengan benar sebagai positif oleh model.

b. True Negative (TN)

Merupakan jumlah sampel negatif yang diklasifikasikan dengan benar sebagai negatif oleh model.

c. False Positive (FP)

Merupakan jumlah sampel negatif yang salah diklasifikasikan sebagai positif oleh model.

d. False Negative (FN)

Merupakan jumlah sampel positif yang salah diklasifikasikan sebagai negatif oleh model

2.2 Penelitian Terkait

2.2.1 State of The Art

Terdapat beberapa penelitian terdahulu yang dilakukan dalam topik Analisis Sentimen Terhadap Program Jabar *Quick Response* Menggunakan *Algoritma Bidirectional Encoder Representations from Transformers* (BERT). Namun, setiap penelitian menggunakan metode yang unik dan memberikan hasil yang berbeda-beda. Berikut ini penelitian yang terkait dengan penelitian yang dilakukan disajikan pada Tabel 2.2.

Tabel 2.2 State of The Art

No	Peneliti	Judul	Permasalahan	Algoritma	Hasil Penelitian
1.	(Sihombing &	Prediksi Sentimen Pada	Menilai bagaimana	IndoRoBERTa,	IndoRoBERTa memiliki F1-
	Situmorang,	Teks Media Sosial	performa model	IndoBERT	Score 95.2% dan akurasi
	2024)	Corporate University	IndoRoBERTa		96.2%, lebih tinggi
		Menggunakan RoBERTa	dibandingkan varian		dibandingkan semua model
			IndoBERT dalam		

			klasifikasi sentimen		IndoBERT yang diuji (maks F1-
			media sosial corporate		Score IndoBERT = 90.2%)
			university.		
2.	(Manoppo dkk.,	Analisis Sentimen Publik	Menganalisis persepsi	IndoBERT	Secara kuantitatif, model
	2025)	di Media Sosial Terhadap	publik di Indonesia		mencapai accuracy 84,94%,
		Kenaikan PPN 12% di	terhadap kebijakan		precision 85,60%, recall
		Indonesia Menggunakan	kenaikan Pajak		84,94%, dan <i>F1-score</i>
		Indobert	Pertambahan Nilai		(weighted) 84,37%. Analisis
			(PPN) menjadi 12%,		distribusi sentimen lebih lanjut
			dengan fokus pada		menunjukkan bahwa sentimen
			pengguna platform X		publik yang dominan adalah
			(sebelumnya Twitter)		negatif

3.	(Purwati, 2023)	Analisis Sentimen Berita	Pandemi Covid-19	RoBERTa	RoBERTa menunjukkan
		Vaksin Covid-19 Dengan	mendorong banyak		performa yang optimal setelah
		Robustly Optimized BERT	pihak agar mampu		proses pre-training dan fine-
		Pre-Training	beradaptasi dengan		tuning dengan pengaturan
		APPROACH(ROBERTa)	kondisi terkini. Salah		hyperparameter seperti epoch,
			satu program yang		batch size, dan learning rate
			diluncurkan pemerintah		
			agar dapat mengatasi		
			penyebaran Covid-19		
			adalah dengan		
			menjalankan program		
			Vaksinasi. Hal ini		
			menunjukkan perlunya		
			analisis mengenai		

			berita terhadap		
			Vaksinasi Covid-19,		
			untuk mengukur		
			bagaimana animo		
			masyarakat terkait		
			program Vaksinasi		
			Covid-19.		
4.	(Putri &	Analisis Sentimen	Perbedaan persepsi	IndoBERT,	Model
	Ardiansyah,	Terhadap Kemajuan	masyarakat terhadap	IndoRoBERTa	indobenchmark/indobert-
	2023)	Kecerdasan Buatan di	kemajuan AI yang		base-p1 menghasilkan akurasi
		Indonesia Menggunakan	muncul di berbagai		validasi 84% dan testing 83%
		BERT dan RoBERTa	platform media sosial,		pada skema 1, serta validasi
			sehingga diperlukan		83% dan testing 84% pada
			pemetaan sentimen		skema 2. Sementara RoBERTa

			publik agar dapat		lebih rendah dengan akurasi
			dijadikan acuan bagi		maksimal hanya 81% validasi
			pemangku kebijakan		dan 79% testing. Sentimen
			dalam membuat		negatif menjadi yang paling
			regulasi pemanfaatan		dominan.
			AI.		
5.	(Jaya, 2023)	Analisis Sentimen	Banyaknya opini publik	Indonesia	Sentimen netral mendominasi
		Pandangan Publik terhadap	terkait profesi PNS di	RoBERTa Base	(86,4%), diikuti negatif (8,6%)
		Profesi PNS dari Twitter	Twitter yang belum	Sentiment	dan positif (4,8%). Model
		Menerapkan Indonesian	dianalisis secara	Classifier	mencapai akurasi tinggi hingga
		RoBERTa Base Sentiment	mendalam untuk		94,36% pada data pelatihan.
		Classifier	mengetahui persepsi		
			masyarakat.		

6.	(Dwiyansaputra	Analisis Sentimen	IndoBERT dar	IndoBERT	Model IndoBERT memiliki
	dkk., 2025)	Pengguna Platform Media	mBERT dipilih	MultilingualBERT	akurasi tertinggi yaitu 84%
		Sosial X pada Topik	sebagai model		dengan presisi 75%, recall 80%,
		Pemilihan Presiden 2024	analisis sentimer		dan F1-Score sebesar 78%.
		Menggunakan	karena supremas		Sedangkan Mbert mencatatkan
		Perbandingan Model	mereka dalam		akurasi 81%, presisi 69%, recall
		Monolingual dan	memahami konteks		78%, dan <i>F1-Score</i> 73%.
		Multilingual Bert	linguistik secara		
			menyeluruh melalu		
			penggunaan arsitektui		
			Transformer.		
			IndoBERT disesuaikar		
			untuk bahasa Indonesia		
			dan dapa		

					menghasilkan	temuan		
					analisis yang l	ebih tepat		
					dalam memal	hami ciri		
					khas bahasa	tersebut,		
					sebagai	model		
					multilingual	mBERT		
					memberikan			
					fleksibilitas	untuk		
					mengevaluasi	teks		
					dalam banyak	bahasa.		
7.	(Adinda	Nur	Analisis	Sentimen	Banyaknya	keluhan	RoBERTa	Sentimen netral tertinggi pada
	Ashifa	dkk.,	Tanggapan	Masyarakat	masyarakat	terhadap		antrean (0.53), positif tertinggi
	2025)		terhadap	Layanan	layanan kese	hatan di		pada fasilitas kesehatan (0.45),

		Kesehatan di Kota	Surabaya yang	dan negatif tertinggi pada
		Surabaya dengan	disampaikan lewat	tenaga kesehatan (0.33).
		RoBERTa	media sosial, namun	Akurasi model: 87,2%.
			belum dianalisis secara	
			sistematis.	
8.	(Zain dkk.,	Analisis Sentimen	Perlunya pemahaman Indonesian	Dari 109.202 tweet, 69,6%
	2021)	Pendapat Masyarakat	terhadap opini RoBERTa Ba	se bersentimen netral, 24,7%
		Mengenai Vaksin Covid-19	masyarakat terkait Sentiment	negatif, dan hanya 5,7% positif.
		Pada Media Sosial Twitter	vaksin Covid-19 agar Classifier	Akurasi prediksi untuk label
		dengan Robustly	program vaksinasi	positif 84%, netral 97%, dan
		Optimized BERT	nasional dapat berjalan	negatif 93%. Analisis
		Pretraining Approach	lebih efektif, mengingat	menunjukkan bahwa sentimen
			banyaknya informasi	negatif dominan dan terkait
				dengan ketidakpercayaan

			dan pendapat di media		terhadap vaksin dan efek
			sosial yang beragam.		sampingnya.
9.	(Fatmasari	Implementasi Algoritma	Media sosial TikTok	IndoBERT	Penelitian ini dilakukan untuk
	dkk., 2024)	BERT Pada Komentar	dan Twitter (X)		mengetahui tingkat layanan
		Layanan Akademik dan	seringkali menjadi		bidang
		Non Akademik Universitas	tempat untuk		akademik dan non-akademik
		Terbuka di Media Sosial	menyampaikan		Universitas Terbuka. Data yang
			pendapat atau komentar		dianalisis sebanyak 685 data
			terhadap suatu hal.		komentar pada media sosial
			Universitas Terbuka		TikTok dan Twitter (X) dengan
			merupakan suatu		kata kunci Universitas Terbuka.
			kampus yang memiliki		Metode yang digunakan adalah
			media sosial TikTok		analisis menggunakan model
			dan Twitter (X) dengan		pre-trained BERT. Pada model

			ribuan pengikut.		ini diperoleh nilai akurasi
			Penelitian ini dilakukan		sebesar 90% dengan proporsi
			untuk mengetahui		data latih dan data uji 80:20.
			tingkat layanan bidang		
			akademik dan non-		
			akademik Universitas		
			Terbuka.		
10.	(Putu dkk.,	Analisis Sentimen terhadap	Perundungan siber	IndoBERT	Tingkat akurasi pada klasifikasi
	2023)	Perundungan Siber pada	adalah penggunaan		perundungan siber dengan
		Twitter menggunakan	teknologi informasi dan		menggunakan data uji dan data
		Algoritma Bidirectional	komunikasi untuk		validasi dalam Bahasa
		Encoder Representations	pelecehan yang		Indonesia yang dihasilkan
		from Transformer (BERT)	disengaja/terencana		dengan menggunakan algoritma
			dan aktivitas		BERT

	permusuhan, yang	sebesar 0,81 y	ang dimana
	dilakukan berulang dan	dalam persentase	akurasinya
	terstruktur.	adalah 81%.	
	Perundungan siber		
	termasuk intimidasi		
	seseorang melalui		
	media sosial,		
	pelecehan, sexting,		
	penipuan, meniru, dan		
	mengirim pesan jahat		
	melalui ruang obrolan		
	dan pesan instan. Hal		
	ini menunjukkan		
	perlunanya analisis		

			terhadap Perundungan	
			Siber pada Twitter.	
11.	(Nelly Sofi	Analisis Sentimen	Balapan MotoGP Satu IndoBERT	Hasil evaluasi dari model
	dkk., 2023)	Masyarakat Pengguna	di Nusa Tenggara Barat	tersebut mendapatkan akurasi
		Media Sosial Twitter	Lombok, Mandalika	sebesar 55%. Precision untuk
		Terhadap Motogp	yang diselenggarakan	positif sebesar 56%, netral
		Mandalika Lombok	pada 18 Maret 2022,	sebesar 59%, dan negatif
		Menggunakan Metode	mendapatkan banyak	sebesar 44%. Recall untuk
		Bidirectional Encoder	tanggapan ataupun	positif sebesar 74%, netral
		Representation from	teaksi dari masayarakat	sebesar 29%, dan negatif 54%.
		Transformers (BERT)	di media social	F1-score untuk positif sebesar
			terutama Twitter.	64%, netral sebesar 38%, dan
			Tanggapan-tanggapan	negatif sebesar 48%.
			tersebut ada yang setuju	

			dan tidak mengenai		
			penyelenggaraan		
			MotoGP di Mandalika		
			ini, untuk mengetahui		
			tanggapan masyarakat		
			yang setuju atau tidak		
			diperlukan sistem yang		
			dapat mengolah data		
			tweets dengan metode		
			analisis sentimen.		
12.	(Adrinta	Analisis Sentimen KUHP	RUU KUHP dianggap	IndoBERT, SVM	Hasil analisis dengan Model
	Abdurrazzaq &	Baru Pada Data Twitter	perlu disahkan untuk		BERT mampu mencapai
	Lesmana	Menggunakan BERT	mengganti undang –		akurasi sebesar 81%. Hasil ini
	Tjiong, 2022)		undang yang lama yang		unggul 6% dibandingkan

	masih berbasis hukum	dengan model	analisis se	entimen
	kolonial, tetapi	menggunakan	Support	Vector
	pengesahan undang –	Machine.		
	undang ini menuai			
	berbagai sentimen dan			
	kritik. Masyarakat			
	menilai banyak pasal –			
	pasal kontroversial di			
	dalamnya, padahal			
	dalam perjalanan			
	perancangannya			
	masyarakt telah			
	berulang kali			
	mengkritik dan			

			mempertanyakan pasal		
			– pasal tersebut.		
13.	(Kusuma &	Implementasi BERT pada	Dalam beberapa tahun	IndoBERT	Hasilnya menunjukkan bahwa
	Mogi, 2023)	Analisis Sentimen Ulasan	terakhir, kontribusi		analisis sentimen menggunakan
		Destinasi Wisata Bali	sektor pariwisata di		model IndoBERT dengan
			Bali meningkat		optimizer AdamW mencapai
			signifikan. Opini publik		akurasi 97% dan AdaFactor
			dan ulasan tentang		mencapai akurasi 98,2%.
			destinasi wisata ini		
			dapat digunakan untuk		
			mengidentifikasi		
			destinasi wisata baru		
			yang sedang naik daun		
			dan diminati. Itulah		

			sebabnya penting untuk		
			memanfaatkan opini		
			positif atau negatif ini		
			untuk memperoleh		
			informasi menarik dan		
			penting tentang		
			destinasi wisata ini		
			untuk digunakan lebih		
			lanjut.		
14.	(Akhmad,	Analisis Sentimen Ulasan	DLU Ferry merupakan	IndoBERT	Hasil pengujian pada penelitian
	2023)	Aplikasi DLU Ferry Pada	aplikasi yang		memperoleh akurasi sebesar
		Google Play Store	dikeluarkan oleh PT.		86% dengan pemilihan
		Menggunakan	Dharma Lautan Utama		hyperparameter, yaitu
		Bidirectional Encoder	untuk memudahkan		

Representations from	pelanggan dalam	batch size 32, learning rate 3e-
Transformers	melakukan pemesanan	6, dan epoch 5.
	tiket. Aplikasi DLU	
	Ferry masih memiliki	
	kelemahan, oleh karena	
	itu perlu perbaikan	
	untuk meningkatkan	
	kualitas aplikasi ini.	
	Untuk mengetahui	
	kelemahan aplikasi ini	
	dapat diperoleh dari	
	ulasan yang ditulis	
	konsumen pada Google	
	Play Store.	

15.	(Farida &	Analisis Sentimen	Twitter menjadi tempat	LSTM,	Pada pengujian model
	Rochmawati,	Masyarakat terhadap	yang ramai ketika	IndoBERT	dilakukan dengan
	2024)	Fenomena Childfree	terdapat isu terkini di		pengujian beberapa parameter
		Menggunakan Metode	negara ini bahkan		untuk mendapatkan model yang
		Long Short-Term Memory	dunia, beberapa isu		optimal diantaranya ukuran
		dan Bidirectional Encoder	terkini menjadi		batch size 128, dropout 0.5,
		Representations from	perhatian khusus oleh		dense layer 32 dan lstm layer
		Transformers di Twitter	masyarakat, salah		64. Hyperparameter tersebut
			satunya tentang isu		dilakukan pelatihan model yang
			fenomena childfree,		menghasilkan performa terbaik
			sehingga penelitian ini		dengan
			dilakukan dengan		akurasi sebesar 0.9585, f1-score
			tujuan untuk		0.9589, loss 0.1001, kemudian
			mengetahui analisis		model dapat memprediksi

	sentimen terhadap	tweets	childfree	dan
	fenomena tersebut.	menghasilk	can precision se	ebesar
		0.7839, rec	all 0.77, dan f1	-score
		0.7697.		

2.2.2 Matriks Penelitian

Tabel 2.3 Matriks Penelitian

	Nama Penulis			Algorit	ma
No	dan Tahun Penelitian	Judul Penelitian	INDORO BERTA	INDO BERT	MULTILINGUAL BERT
1.	(Sihombing & Situmorang, 2024)	Prediksi Sentimen Pada Teks Media Sosial Corporate University Menggunakan RoBERTa	√	✓	
2.	(Manoppo dkk., 2025)	Analisis Sentimen Publik di Media Sosial Terhadap Kenaikan PPN 12% di Indonesia Menggunakan Indobert		√	
3.	(Purwati, 2023)	Analisis Sentimen Berita Vaksin Covid-19 Dengan Robustly Optimized BERT Pre-Training APPROACH(ROBERTa)	√		

4.	(Putri & Ardiansyah,	Analisis Sentimen Terhadap Kemajuan Kecerdasan Buatan di Indonesia Menggunakan BERT dan RoBERTa	√	✓	
	2023)	indonesia wenggunakan bekt dan Kobekta			
	(Jaya, 2023)	Analisis Sentimen Pandangan Publik terhadap Profesi PNS			
5.		dari Twitter Menerapkan Indonesian RoBERTa Base	√		
		Sentiment Classifier			
	(Dwiyansaputra	Analisis Sentimen Pengguna Platform Media Sosial X pada			
6.	dkk., 2025)	Topik Pemilihan Presiden 2024 Menggunakan Perbandingan		✓	✓
		Model Monolingual dan Multilingual Bert			
	(Adinda Nur	Analisis Sentimen Tanggapan Masyarakat terhadap Layanan			
7.	Ashifa dkk.,	Kesehatan di Kota Surabaya dengan RoBERTa	√		
	2025)				

8.	(Zain dkk., 2021)	Analisis Sentimen Pendapat Masyarakat Mengenai Vaksin Covid-19 Pada Media Sosial Twitter dengan Robustly	√		
		Optimized BERT Pretraining Approach			
	(Fatmasari	Implementasi Algoritma BERT Pada Komentar Layanan			
9.	dkk., 2024)	Akademik dan Non Akademik Universitas Terbuka di Media		✓	
		Sosial			
	(Putu dkk.,	Analisis Sentimen terhadap Perundungan Siber pada Twitter			
10.	2023)	menggunakan Algoritma Bidirectional Encoder		✓	
		Representations from Transformer (BERT)			
	(Nelly Sofi	Analisis Sentimen Masyarakat Pengguna Media Sosial			
11.	dkk., 2023)	Twitter Terhadap Motogp Mandalika Lombok Menggunakan		√	
11.		Metode Bidirectional Encoder Representation from		,	
		Transformers (BERT)			

	(Adrinta	Analisis Sentimen KUHP Baru Pada Data Twitter		
12.	Abdurrazzaq &	Menggunakan BERT	\checkmark	
	Lesmana			
	Tjiong, 2022)			
13.	(Kusuma &	Implementasi BERT pada Analisis Sentimen Ulasan Destinasi	√	
15.	Mogi, 2023)	Wisata Bali		
	(Akhmad,	Analisis Sentimen Ulasan Aplikasi DLU Ferry Pada Google		
14.	2023)	Play Store Menggunakan Bidirectional Encoder	\checkmark	
		Representations from Transformers		
	(Farida &	Analisis Sentimen Masyarakat terhadap Fenomena Childfree		
15.	Rochmawati,	Menggunakan Metode Long Short-Term Memory dan	√	
	2024)	Bidirectional Encoder Representations from Transformers di		
		Twitter		

	(Gumelar,	Perbandingan Model IndoBERT, MultilingualBERT, dan			
16.	2024)	IndoROBERTa dalam Analisis Sentimen Terhadap Program	✓	✓	✓
		Jabar Quick Response			

Tabel 2.3 Memberikan perbandingan dengan penelitian terdahulu dan yang akan dilakukan. Dari hasil studi literatur megenai penelitian sebelumnya, dapat disimpulkan hasil dari pembahasan penelitian tersebut hanya melakukan dengan pengujian 1 model. Maka dari itu penelitian yang akan dilakukan membandingkan 3 model yaitu IndoBERT, MultilingualBERT, dan IndoROBERTa dengan mengambil data tentang program Jabar *Quick Response* di media sosial sebagai sumber datanya sehingga dapat diukur performa dan hasil tingkat akurasi yang terbaik dari masing masing 3 model tersebut.