BABII

TINJAUAN PUSTAKA

2.1 Landasan Teori

Generator dirancang untuk beroperasi secara optimal pada beban tertentu, sehingga fluktuasi beban pada generator sinkron dapat berdampak signifikan terhadap efisiensi. Fluktuasi merupakan perubahan atau ketidakstabilan yang terjadi secara naik turun dalam suatu kondisi, nilai, atau situasi tertentu. fluktuasi beban dapat menyebabkan generator tidak berada dalam kondisi pengoperasian paling efisien, sehingga meningkatkan kerugian energi. Seperti kerugian tembaga dan kerugian inti. Fluktuasi beban juga dapat mempengaruhi stabilitas tegangan dan frekuensi keluaran, yang merupakan faktor penting dalam menjaga efisiensi keseluruhan sistem. Oleh karena itu, pemahaman tentang bagaimana variasi beban memengaruhi kinerja generator sinkron sangat penting untuk memaksimalkan efisiensi dan mengurangi kerugian energi dalam sistem pembangkitan listrik.

2.1.1 Prinsip Kerja Pembangkit Listrik

Pembangkit tenaga listrik adalah bagian dari sistem tenaga listrik yang berfungsi untuk menghasilkan energi listrik dengan mengubah energi dari sumber lain menjadi energi listrik. Untuk menghasilkan energi listrik, diperlukan sebuah alat yang disebut generator. Generator hanya dapat menghasilkan energi listrik jika porosnya diputar, dan putaran ini membutuhkan energi mekanik.

2.1.2 Jenis- Jenis Pembangkit Listrik

Pembangkit listrik dapat dikategorikan berdasarkan jenis sumber energi yang digunakan. Setiap kategori ini memiliki karakteristik dan cara kerja yang berbeda, mulai dari proses konversi energi hingga dampaknya terhadap lingkungan. Beberapa kategori pembangkit listrik dapat memanfaatkan sumber daya alam yang tersedia secara alami, sementara yang lain memanfaatkan teknologi untuk menghasilkan energi. Penggunaan berbagai jenis pembangkit ini bergantung pada kebutuhan energi, efisiensi, serta pertimbangan lingkungan dan ekonomi. Berdasarkan sumber energi yang digunakan, pembangkit listrik dapat dikategorikan menjadi beberapa jenis, antara lain:

1. Pembangkit Listrik Tenaga Uap (PLTU)

Pembangkit Listrik Tenaga Uap (PLTU) menggunakan uap sebagai fluida kerja untuk menghasilkan listrik. Uap ini dihasilkan dari pemanasan air menggunakan bahan bakar seperti batu bara, gas alam, atau minyak bumi. Uap bertekanan tinggi digunakan untuk memutar turbin yang terhubung dengan generator. Proses ini sangat efisien dan memiliki kapasitas besar, tetapi juga berdampak negatif pada lingkungan melalui emisi gas rumah kaca dan polusi udara. Oleh karena itu, pengelolaan dan teknologi ramah lingkungan sangat diperlukan dalam operasional PLTU (Pontoh et al., 2021). Prinsip kerja PLTU melibatkan siklus air-uap-air tertutup. Air kondensat dipompa ke pemanas tekanan rendah, dipanaskan, dan masuk ke *de-aerator* untuk menghilangkan oksigen. Selanjutnya, air dipanaskan di *economizer* dan *tube boiler* hingga berubah menjadi uap. Uap ini kemudian dipanaskan lebih lanjut pada superheater hingga menjadi uap kering

bertekanan tinggi yang menggerakkan turbin. Putaran turbin memutar generator untuk menghasilkan listrik. Setelah itu, uap yang keluar dari turbin dikondensasikan kembali di kondensor, dan siklus ini berulang (Haryanto, 2016).

2. Pembangkit Listrik Tenaga Air (PLTA)

Pembangkit Listrik Tenaga Air (PLTA) adalah salah satu jenis pembangkit listrik yang menggunakan energi potensial dan kinetik dari air untuk menghasilkan listrik. PLTA mengandalkan aliran air dari sungai, bendungan, atau danau untuk menggerakkan turbin yang terhubung dengan generator. Energi mekanik dari turbin yang berputar ini kemudian diubah menjadi energi listrik oleh generator (Pipit et al., 2020). Prinsip kerja Pembangkit Listrik Tenaga Air (PLTA) dimulai dengan penyimpanan air dalam bendungan untuk meningkatkan energi potensial. Air kemudian dialirkan melalui *penstock* menuju turbin dengan kecepatan tinggi. Aliran air yang deras memutar turbin, yang terhubung dengan generator. Generator mengubah energi mekanik dari putaran turbin menjadi energi listrik melalui induksi elektromagnetik. Listrik yang dihasilkan kemudian dikirim melalui transformator dan sistem transmisi untuk disalurkan ke pengguna akhir, seperti rumah tangga atau industri. Proses ini berulang terus-menerus selama air mengalir dan dapat menghasilkan energi secara berkelanjutan dengan dampak lingkungan yang lebih rendah (Hidayat, 2019).

3. Pembangkit Listrik Tenaga Bayu (PLTB)

Pembangkit Listrik Tenaga Bayu (PLTB) bekerja dengan memanfaatkan energi angin untuk menghasilkan listrik melalui turbin angin. Proses dimulai

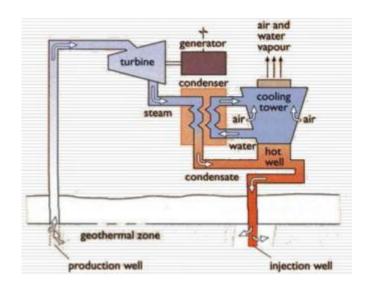
dengan pengumpulan energi angin, di mana angin yang bertiup menggerakkan bilah-bilah turbin yang terpasang pada rotor. Ketika angin bertiup, rotor berputar sesuai dengan kecepatan angin. Selanjutnya, rotasi rotor diteruskan ke *gearbox* yang berfungsi untuk meningkatkan kecepatan putaran agar sesuai dengan kebutuhan generator. *Gearbox* ini menyesuaikan putaran rotor yang lebih lambat menjadi lebih cepat. Putaran rotor yang diteruskan ke generator kemudian diubah menjadi energi listrik melalui proses induksi elektromagnetik. Listrik yang dihasilkan kemudian dinaikkan tegangan oleh transformator dan disalurkan melalui sistem transmisi ke konsumen. Dengan cara ini, PLTB dapat menghasilkan energi listrik yang ramah lingkungan dan berkelanjutan menggunakan kekuatan alam angin (Ujang Wiharja & Andres Sofani Fibrihadi, 2015)

4. Pembangkit Listrik Tenaga Surya (PLTS)

Pembangkit Listrik Tenaga Surya (PLTS) adalah sistem yang memanfaatkan energi matahari untuk menghasilkan listrik dengan menggunakan efek *fotovoltaik*. PLTS terdiri dari panel surya yang mengandung sel *fotovoltaik* yang mengubah energi cahaya matahari menjadi arus listrik searah (DC). Ketika sinar matahari mengenai sel *fotovoltaik*, energi foton menggerakkan elektron dalam bahan semikonduktor, menciptakan arus listrik. Inverter kemudian mengubah arus listrik searah (DC) ini menjadi arus bolak-balik (AC) yang dapat digunakan oleh peralatan listrik rumah tangga atau dikirim ke jaringan listrik. PLTS adalah sumber energi terbarukan yang ramah lingkungan dan tidak menghasilkan emisi gas rumah kaca. Efisiensi PLTS bergantung pada intensitas cahaya matahari, suhu, dan kualitas modul surya yang digunakan. PLTS sangat cocok untuk digunakan di wilayah

tropis seperti Indonesia, di mana sinar matahari melimpah sepanjang tahun (Nurjaman & Purnama, 2022).

5. Pembangkit Listik Tenaga Panas Bumi (PLTP)

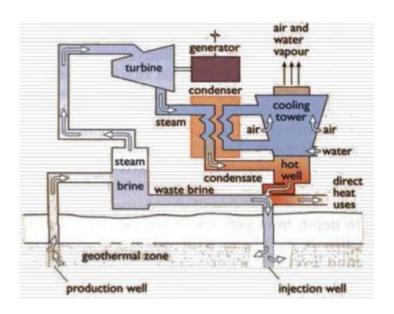

Pembangkit Listrik Tenaga Panas Bumi (PLTP) adalah sistem pembangkit listrik yang memanfaatkan panas bumi (geothermal) sebagai sumber energi. PLTP menggunakan panas yang berasal dari inti bumi, yang biasanya ditemukan di daerah vulkanik atau di dekat lempeng tektonik aktif. Sistem ini mengandalkan sumursumur produksi yang mengekstraksi uap dan air panas dari bawah permukaan bumi. Uap yang dihasilkan kemudian digunakan untuk menggerakkan turbin yang terhubung dengan generator, menghasilkan listrik. Setelah melewati turbin, uap didinginkan dan dikondensasikan kembali menjadi air, kemudian disuntikkan kembali ke dalam tanah untuk menjaga keberlanjutan sumber daya. PLTP merupakan sumber energi terbarukan dan ramah lingkungan karena tidak menghasilkan emisi gas rumah kaca. Selain itu, PLTP juga memiliki kapasitas untuk menghasilkan listrik secara terus-menerus sepanjang tahun karena sumber panas bumi selalu tersedia (Amrita & Nugroho, 2019).

2.1.3 PLTP

Energi panas bumi atau geothermal digunakan sebagai pembangkit tenaga listrik dimulai di Italia pada tahun 1904. Sejak itu energi panas bumi mulai dipikirkan secara komersial untuk pembangkit tenaga listrik. Pada hakekatnya, energi panas bumi adalah termasuk energi primer karena diberikan oleh alam seperti minyak bumi, gas bumi, batubara dan tenaga air. Indonesia merupakan salah satu negara terkaya akan potensi energi panas bumi. Sementara pemanfataan untuk

pembangkit listrik hingga saat ini baru 1189 MW atau sekitar 4 % dari potensi total yang tersedia. Namun yang disajikan di dalam RUPTL 2013-2022 seperti laporan studi oleh WestJEC pada tahun 2007 *Master Plan Study for Geothermal Power Development in the Republic of Indonesia*. Menurut laporan tersebut, potensi panas bumi Indonesia yang dapat dieksploitasi adalah 9.000 MW, tersebar di 50 lapangan, dengan potensi minimal 12.000 MW. Di bawah kulit bumi, yaitu lapisan atas merupakan batu batuan dan lumpur panas yang disebut magma. Magma yang keluar ke permukaan bumi melalui gunung disebut lava. Setiap turun 100 meter ke dalam perut bumi, temperatur batu-batuan dan cairan tersebut naik sekitar 30°C. Jadi semakin jauh ke dalam perut bumi suhu batu-batuan maupun lumpur akan makin tinggi. Apabila suhu di permukaan bumi 27°C, maka pada kedalaman 100 meter suhu dapat mencapai sekitar 57°C. Pada kedalaman 1 kilometer suhu batu-batuan dan cairan dapat mencapai 570-600°C (Dwiatmanto, 2022).

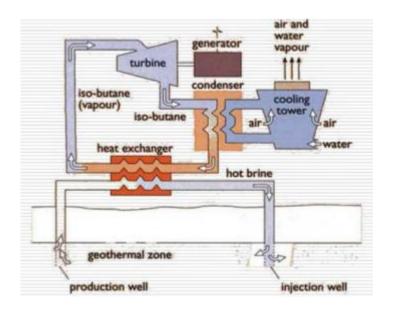
Dalam perkembangannya, ada beberapa macam proses konversi energi yang digunakan pada PLTP. Pertama adalah sistem uap kering atau *dry steamsystem*. Pada PLTP jenis ini, uap air yang keluar dari sumur produksi kondisinya relatif kering (kandungan uap airnya tidak terlalu banyak). Uap panas ini digunakan untuk memutar turbin setelah sebelumnya dilakukan penyaringan. Penyaringan ini dilakukan untuk memisahkan zat-zat lain dan bara api yang terikut naik dari sumur produksi. Hal ini dilakukan untuk mengurangi kerusakan sistem pipa dan turbin akibat terkena panas berlebih maupun zat kimia berbahaya. Skema prinsip kerja PLTP tipe uap kering ini tampak pada Gambar 2.1, (Suripto, 2017).



Gambar 2.1 Skema PLTP dengan uap kering Sumber: (Suripto, 2017)

Uap air yang keluar dari turbin kemudian diembunkan dalam kondenser untuk selanjutnya diinjeksikan lagi ke bumi melalui sumur injeksi. Ini perlu dilakukan untuk mengurangi bahaya akibat ketidakseimbangan ekosistem di dalam bumi, dan juga untuk mengupayakan agar kondisi uap air yang keluar dari sumur produksi lebih stabil. Untuk kepentingan pengembunan, pendinginan dilakukan dengan air yang disirkulasikan melalui menara pendingin atau *cooling tower*, karena PLTP biasanya dibangun di pegunungan yang jauh dari pantai, (Suripto, 2017).

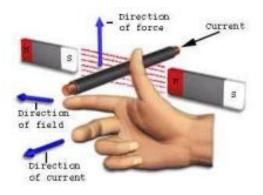
Jenis kedua adalah PLTP, kondisi uap air panas yang keluar dari sumur produksi masih banyak mengandung air atau sering disebut uap basah. Proses pada PLTP jenis uap basah ini dikelompokkan menjadi dua, yaitu: proses sirkulasi tunggal atau single flash steam power plant dan proses dengan dua sirkulasi panas yang terpisah atau binary cycle power plant. Pada sistem sirkulasi tunggal, uap panas dari sumur lansung digunakan untuk memutar turbin uap setelah kandungan


airnya dipisahkan dari uap panas. Kemudian uap yang keluar dari turbin diembunkan, lalu dipompakan kembali ke bumi bersamaan dengan air yang dipisahkan dari uap panas melalui sumur injeksi. Secara sederhana, skema proses single flash steam power plant terlihat pada Gambar 2.2, (Suripto, 2017).

Gambar 2.2 Skema PLTP dengan uap basah *single flash steam power plant*Sumber:(Suripto, 2017)

Proses jenis binary cycle power plant, sirkulasi uap panas yang berasal dari sumur produksi terpisah dengan sirkulasi uap air yang digunakan untuk memutar turbin. Sirkulasi pertama, uap panas yang berasal dari bumi dilewatkan pada media pemindahan panas semacam boiler pada PLTU yang disebut heat exchager, kemudian uap atau gas panas yang keluar dari heat exchager itu dipompakan kembali ke dalam bumi. Sirkulasi kedua adalah sirkulasi air yang berubah menjadi uap akibat pemanasan di heat exchanger dialirkan ke turbin untuk memutar turbin. Setelah keluar dari turbin, uap diembunkan kembali, kemudian dimasukkan lagi ke

heat exchanger untuk diuapkan. Secara sederhana proses binary cycle power plant seperti tampak pada Gambar 2.3, (Suripto, 2017).


Gambar 2.3 Skema *binary cycle power plant*Sumber:(Suripto, 2017)

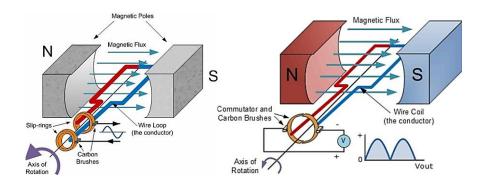
2.1.4 Generator

Arus listrik AC *Alternating Current* merupakan arus listrik yang arahnya bolak-balik pada sebuah rangkaian listrik. Jika pada rangkaian listrik DC *Direct Current* arus listrik mengalir dari kutub positif ke kutub negatif, berbeda dengan rangkaian listrik AC dimana arus listrik bergerak secara periodik berbolak-balik arah dari kutub satu ke yang lainnya.

Hukum Faraday dan induksi elektromagnetik sebagai fenomena dasar yang diterapkan pada generator. Hukum Faraday menyebutkan jika terjadi perubahan Garis Gaya Magnet (GGM) pada sebuah kumparan kawat, maka akan timbul Gaya Gerak Listrik (GGL) pada kawat tersebut. Jika kumparan kawat dihubungkan dengan rangkaian listrik tertutup, maka akan timbul pula arus listrik yang mengalir

pada rangkaian. Memahami hukum Faraday tidak dapat lepas dengan kaidah tangan kanan yang diperkenalkan oleh John Ambrose Fleming. Kaidah tangan kanan seperti yang ditunjukkan pada Gambar 2.4 *fleming* adalah sebuah metode mneumonik untuk memudahkan kita menentukan arah vektor dari ketiga komponen hukum Faraday, yakni arah gaya gerak kumparan kawat, arah medan magnet, serta arah arus listrik. Jika menirukan posisi jari tangan kanan seperti pada gambar di atas, maka ibu jari akan menunjukkan arah gaya torsi, jari telunjuk menunjukkan arah medan magnet, dan jari tengah menunjukkan arah arus listrik, (Alwie et al., 2020).

Gambar 2.4 Kaidah tangan kanan


Sumber: (Alwie et al., 2020)

Pada hukum Faraday, mengenai induksi elektromagnetik sebagai fenomena dasar yang diterapkan pada generator. Jika kumparan kawat dihubungkan dengan rangkaian listrik tertutup, maka akan timbul pula arus listrik yang mengalir pada rangkaian. Generator sinkron tiga phasa, menggunakan tiga kumparan jangkar yang ditempatkan di stator yang disusun dalam bentuk tertentu, sehingga susunan kumparan jangkar yang sedemikian akan membangkitkan tegangan induksi pada ketiga kumparan jangkar yang besarnya sama tapi berbeda phasa 120° satu sama

lain. Setelah itu ketiga terminal kumparan jangkar siap dioperasikan untuk menghasilkan energi listrik, (Marsudi, 2006).

Generator bekerja berdasarkan prinsip induksi elektromagnetik. Apabila rotor generator diputar pada kecepatan konstan, fluks magnetik yang dihasilkan arus eksitasi pada belitan medan rotor menginduksi tegangan pada belitan jangkar stator. Tegangan induksi stator ini meningkat secara linier sesuai dengan peningkatan arus eksitasi hingga terjadi kejenuhan pada inti rotor. Apabila terminal rotor dihubungkan dengan beban, akan mengalir arus pada belitan jangkar stator, dan terjadilah transfer daya dari generator ke beban tersebut. Pada PLTP generator dikopel langsung dengan turbin uap kemudian akan menghasilkan tegangan listrik manakala turbin tersebut berputar, (Refaldi et al., 2022).

Pada skema komponen-komponen generator AC pada Gambar 2.5, rotor generator diskemakan dengan sebuah kawat angker penghantar listrik (*armature*) yang membentuk persegi panjang. Masing-masing ujung kawat angker terhubung dengan cincin logam yang biasa kita kenal dengan sebutan slip ring. Slip ring ini termasuk bagian dari rotor, sehingga ia ikut berputar dengan rotor. Komponen slip ring inilah yang membedakan antara generator AC dengan DC. Jika pada generator DC digunakan cincin belah sebagai penyearah arus, pada generator AC slip ring berbentuk lingkaran penuh dan memiliki 2 slip ring. Untuk sisi stator generator tersusun atas dua magnet dengan kutub berbeda yang saling berhadapan. Pada bagian yang kontak langsung dengan slip ring, stator dilengkapi dengan sikat karbon yang berfungsi untuk menghubungkan arus listrik yang dibangkitkan pada kawat angker ke rangkaian listrik di luar generator, (Alwie et al., 2020).

Gambar 2.5 Komponen generator AC dan DC Sumber: (Cerdika, 2023)

Faktor – faktor yang mempengaruhi pengaturan generator adalah sebagai berikut:

- 1. Penurunan tegangan IR pada lilitan jangkar
- 2. Penurunan tegangan pada lilitan jangkar
- 3. Reaksi jangkar (pengaruh magnet isasi dari arus jangkar)

Dalam generator DC, GGL yang dibangkitkan merupakan jumlah dari tegangan terminal dan penurunan tegangan IR pada rangkaian jangkar. Dalam generator AC, penurunan tegangan karena reaktansi induktif lilitan harus diperhitungkan. Maka GGL yang dibangkitkan generator AC sama dengan tegangan terminal ditambah penurunan tegangan IR maupun dalam lilitan jangkar, (Manangka et al., 2022).

2.1.5 Generator Sinkron

Generator sinkron, juga dikenal sebagai alternator, adalah perangkat listrik yang mengubah energi mekanik menjadi energi listrik melalui proses induksi medan magnet. Kemampuan generator untuk menghasilkan listrik bergantung pada pergerakan relatif antara medan magnet yang konstan dan kumparan jangkar di

dalamnya. Medan magnet yang konstan ini dapat diciptakan oleh arus yang mengalir melalui kumparan atau oleh magnet permanen.(Wibisono et al., 2024).

Tegangan dan arus keluaran dari generator sinkron adalah tegangan bolakbalik, sehingga generator ini juga dikenal sebagai generator AC. Perbedaan utama dengan generator DC terletak pada penempatan kumparan jangkar dan rotor. Pada generator DC, kumparan jangkar terletak di rotor yang berputar di antara kutub magnet yang diam diputar oleh tenaga mekanik. Sebaliknya, pada generator sinkron, kumparan jangkar, yang disebut sebagai kumparan stator, berada pada posisi tetap. Rotor, yang mengandung kutub magnet, diputar oleh tenaga mekanik. Nama "sinkron" berasal dari fakta bahwa kecepatan putaran rotor generator sama dengan perputaran medan magnet. Kecepatan Sinkron ini didapatkan dari perputaran rotor dengan kutub magnet yang sama dengan medan putar pada stator, (Refaldi et al., 2022)

Secara singkat prinsip kerja generator sinkron sebagai berikut.

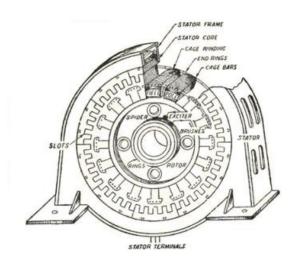
- Generator sinkron terdiri dari dua bagian, stator berupa kumparan yang berfungsi membangkitkan tegangan dan arus induksi, dan rotor yang berupa kumparan magnet yang berfungsi membangkitkan medan magnet.
- Kumparan rotor dialiri listrik arus searah (DC), sehingga timbul medan magnet di sekitar kumparan. Besar kuat medannya dipengaruhi oleh jumlah lilitan dan kuat arus yang mengalir.
- 3. Rotor diputar sehingga medan magnet yang timbul pada rotor turut berputar mengkuti putaran rotor.

- 4. Medan magnet pada rotor yang berputar akan mengenai kumparan stator, sehingga pada kumparan stator timbul tegangan induksi.
- Bila kedua ujung kumparan stator dihubungkan dengan beban, maka akan mengalir arus bolak-balik ke beban.

Bila kumparan statornya hanya terdiri satu pasang kumparan yang diletakkan berhadapan, maka generator tersebut akan menghasilkan tegangan bolak-balik satu fasa, yaitu tegangan yang berbentuk gelombang sinusoidal dengan frekuensi tertentu sesuai dengan kecepatan putaran poros. Generator sinkron semacam ini disebut generator sinkron satu fasa.

2.1.6 Generator Induksi

Generator induksi adalah alat yang mengubah energi mekanik menjadi energi listrik menggunakan prinsip induksi elektromagnetik. Berbeda dengan generator sinkron, generator induksi tidak memerlukan sumber daya eksternal untuk menghasilkan medan magnet. Sebaliknya, generator ini memanfaatkan medan magnet yang dihasilkan oleh arus listrik yang mengalir melalui lilitan stator dan rotor. Pada generator induksi, rotor terdiri dari lilitan yang terhubung dengan batang-batang konduktor di sekitar rangka rotor, yang dikenal sebagai rotor sangkar tupai. Ketika rotor berputar, arus induksi dihasilkan dalam batang konduktor yang menciptakan medan magnet. Interaksi antara medan magnet stator dan medan magnet rotor menghasilkan gaya elektromagnetik yang menghasilkan listrik. Generator induksi sering digunakan dalam aplikasi tenaga angin, mikrohidro, dan pembangkit listrik di daerah terpencil karena keandalannya, biaya rendah, dan kemampuan untuk beroperasi dalam kondisi yang bervariasi. Meskipun


efisiensinya sedikit lebih rendah dibandingkan generator sinkron, generator induksi memiliki keuntungan dalam hal kestabilan operasi dan tidak memerlukan sistem kontrol yang rumit (Supardi et al., 2016).

Prinsip kerja generator induksi secara singkat adalah sebagai berikut:

- Rotor Berputar: Rotor yang terbuat dari bahan konduktor (biasanya berbentuk sangkar tupai) mulai berputar karena energi mekanik yang diberikan oleh sumber eksternal, seperti turbin.
- 2. Induksi Elektromagnetik: Rotor yang berputar di dalam medan magnet stator menghasilkan arus listrik yang diinduksi dalam rotor.
- Medan Magnet Rotor: Arus listrik yang diinduksi dalam rotor menciptakan medan magnet yang bergerak, yang berinteraksi dengan medan magnet stator.
- 4. Arus Listrik Terinduksi: Interaksi medan magnet rotor dan stator menghasilkan arus listrik di lilitan stator, yang kemudian diubah menjadi arus listrik yang dapat digunakan.

Generator induksi bekerja tanpa memerlukan sumber daya eksternal untuk menghasilkan medan magnet, menjadikannya pilihan yang andal dan sederhana untuk pembangkitan listrik (Supardi et al., 2016).

2.1.7 Konstruksi Generator

Gambar 2.6 Kontruksi generator

Sumber: (Cerdika, 2023)

Generator sinkron mengkonversi energi mekanik menjadi energi listrik bolakbalik secara elektromagnetik. Energi mekanik berasal dari penggerak mula yang memutar rotor, sedangkan energi listrik dihasilkan dari proses induksi elektromagnetik yang terjadi pada kumparan-kumparan stator seperti yang ditunjukkan pada Gambar 2.6. Secara keseluruhan struktur generator sinkron terdiri dari 3 elemen yaitu:

2.1.7.1 Stator

Stator atau *armature* adalah komponen generator yang bersifat statis dan berperan sebagai tempat yang menerima induksi magnet dari rotor. Arus bolakbalik (AC) yang mengalir ke beban dialirkan melewati *armature* yang memiliki bentuk rangka silinder dengan kumpulan kawat konduktor yang sangat banyak. Lilitan pada *armature* generator dihubungkan dalam konfigurasi wye dan titik

netralnya terhubung ke tanah. Selain itu, komponen ini memiliki alur atau slot memanjang yang berisi belitan kawat yang dikenal sebagai belitan jangkar atau *armature winding*. (Apouw & Mangindaan, 2023)

Gambar 2.7 Stator pada Generator

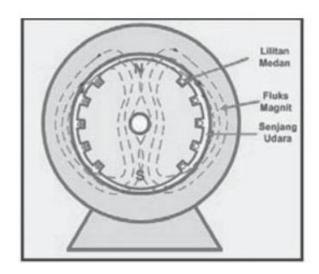
Sumber: (Alpha Kusuma & Setiawan, 2022).

Stator merupakan bagian statis pada generator yang berfungsi menghasilkan medan magnet yang berinteraksi dengan rotor. Gambar 2.7 stator terdiri dari kumparan atau gulungan kawat yang dililitkan pada inti besi. Ketika rotor berputar, medan magnet yang dihasilkan oleh stator menginduksikan arus listrik dalam kumparan rotor, menghasilkan energi listrik (Alpha Kusuma & Setiawan, 2022).

2.1.7.2 Rotor

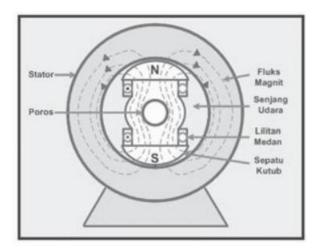
Rotor merupakan bagian berputar yang berfungsi untuk membangkitkan medan magnet yang menghasilkan tegangan dan akan di induksikan ke stator. Di dalam rotor generator, terdapat juga kumparan jangkar yang berperan dalam menghasilkan gaya gerak listrik yang kemudian diteruskan melalui komutator. Listrik yang dihasilkan oleh komutator dikeluarkan melalui sikat atau brush. Rotor ini memiliki komponen utama antara lain:

a. Slip ring


Slip ring adalah cincin logam yang mengelilingi poros rotor tetapi terisolasi secara elektrik. Terminal kumparan rotor terhubung ke slip ring ini, dan kemudian arus dapat dihubungkan ke sumber arus searah (DC) melalui sikat atau brush yang berada dalam kontak langsung dengan slip ring tersebut. Slip ring dipakai untuk mentransfer arus listrik dari rotor ke sirkuit eksternal, dan isolasi pada slip ring memastikan bahwa arus tetap mengalir hanya melalui jalur yang diinginkan tanpa mengalami gangguan atau hubungan pendek, (Apouw & Mangindaan, 2023).

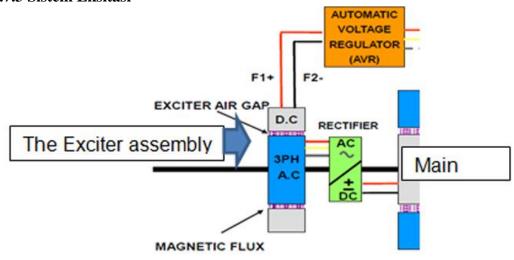
b. Kumparan Rotor (Kumparan Medan)

Kumparan medan memiliki peran kunci dalam menghasilkan medan magnet yang diperlukan dalam operasi berbagai perangkat, seperti motor listrik, generator, atau transformator. Kumparan medan mendapatkan arus searah (DC) dari sumber eksitasi tertentu, seperti baterei atau generator arus searah, dan ini menciptakan medan magnet yang mengelilingi kumparan tersebut. Medan magnet ini kemudian berinteraksi dengan komponen lain dalam perangkat tersebut, seperti kumparan stator pada generator, untuk menghasilkan aliran listrik atau gerakan mekanis yang diinginkan. Sehingga, kumparan medan berperan penting dalam mengendalikan operasi perangkat listrik, (Apouw & Mangindaan, 2023).


c. Poros Rotor

Poros rotor adalah lokasi di mana kumparan medan ditempatkan, dan pada poros rotor ini terdapat slot-slot yang berjajar sejajar dengan poros rotor. Rotor generator sinkron pada dasarnya merupakan elektromagnet besar. Kutub medan magnet rotor bisa berupa kutub menonjol atau kutub silinder, (Apouw & Mangindaan, 2023).

Gambar 2.8 Rotor kutub silinder Sumber : (Sunarlik, 2017).


Medan rotor yang digunakan bergantung pada kecepatan mesin. Gambar 2.8 mesin dengan kecepatan tinggi, seperti turbo generator, memiliki rotor dengan bentuk silinder. Desain ini memungkinkan rotor berputar dengan efisien pada kecepatan tinggi, memberikan kestabilan medan magnet yang diperlukan untuk menghasilkan listrik secara optimal pada mesin berkecepatan tinggi (Sunarlik, 2017).

Gambar 2. 9 Rotor kutub menonjol Sumber : (Sunarlik, 2017)

Mesin dengan kecepatan rendah Gambar 2.9 seperti pada pembangkit listrik tenaga air (PLTA) dan generator diesel, umumnya menggunakan rotor kutub menonjol. Rotor jenis ini memiliki kutub magnet yang menonjol keluar dari permukaan rotor, yang memberikan medan magnet lebih kuat meskipun beroperasi pada kecepatan rendah. Desain ini sangat cocok untuk aplikasi dengan kecepatan rotasi yang lebih lambat, seperti turbin air pada PLTA atau mesin diesel. Rotor kutub menonjol memungkinkan generator menghasilkan daya yang besar meskipun pada kecepatan yang lebih rendah, sehingga efektif untuk pembangkit listrik yang membutuhkan daya tinggi dengan kecepatan putar yang relatif rendah (Sunarlik, 2017).

2.1.7.3 Sistem Eksitasi

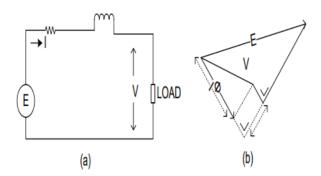
Gambar 2.10 Sistem Eksitasi pada Generator

Sumber: (An et al., n.d.)

Exciter adalah sistem yang berfungsi untuk menghasilkan arus eksitasi yang diperlukan oleh generator, terutama pada generator listrik arus searah (DC) atau generator sinkron. Arus eksitasi ini sangat penting karena bertanggung jawab untuk

menciptakan medan magnet yang dibutuhkan untuk menghasilkan tegangan pada kumparan rotor generator. Tanpa arus eksitasi yang stabil, generator tidak dapat beroperasi dengan efisien atau bahkan tidak dapat menghasilkan listrik sama sekali.

Pada umumnya, *exciter* terdiri dari mesin pembangkit arus eksitasi, regulator eksitasi, dan berbagai perangkat kontrol lainnya yang memastikan kestabilan arus yang dihasilkan. Mesin *exciter* dapat berupa generator kecil yang terpisah atau dapat juga digabungkan dalam satu unit dengan generator utama. Sistem *exciter* memiliki peran yang sangat vital dalam menjaga kestabilan tegangan *output* generator dengan cara mengatur *level* arus eksitasi yang diterima rotor sesuai dengan kebutuhan beban (An et al., n.d.).


2.1.8 Pembebanan Generator

Jika generator semakin tinggi kecepatan putaran poros, maka tegangan keluaran juga semakin naik, dan sebaliknya. Semakin besar fluks yang dihasilkan kumparan medan akan mengakibatkan tegangan *output* pada kumparan stator bertambah tinggi, dan sebaliknya. Tegangan *output* generator selain dipengaruhi oleh besarnya fluks magnet dan putaran generator, juga dipengaruhi oleh arus beban. Semakin besar arus beban, maka tegangan *output* generator semakin rendah karena adanya turun tegangan pada kumparan stator, dan demikian juga sebaliknya, (Suripto, 2017).

Besarnya medan magnet yang dihasilkan oleh kumparan medan dipengaruhi oleh arus yang mengalir pada kumparan itu. Semakin besar arus yang mengalir, maka fluks magnet yang dihasilkan akan semakin besar. Ketika generator

beroperasi selalu diupayakan agar tegangan generator stabil. Dengan demikian untuk mengatur tegangan *output* generator stabil, dapat dilakukan salah satunya dengan mengatur arus yang masuk ke kumparan medan pada rotor. Pengaturan arus medan dilakukan dengan cara merubah resistor variabel yang dipasang pada rangkaian kumparan rotor tersebut, baik dengan cara manual maupun otomatis,(Suripto, 2017).

Jika Generator menerima beban atau menyuplai daya ke beban, kemudian arus beban (Ia) mengalir melalui kumparan stator dengan impedansi Z = (R + jXs) Ω . Arus beban menyebabkan hilangnya tegangan pada belitan stator sehingga menurunkan tegangan keluaran generator (V). Hubungan antara arus beban (Ia) dan tegangan keluaran generator. Semakin tinggi arus beban maka semakin besar rugirugi tegangan pada belitan stator generator, yang selanjutnya akan menurunkan tegangan keluaran generator (V). Untuk mengembalikan tegangan keluaran generator ke nilai nominalnya, tegangan induksi (E) dinaikkan dengan menaikkan arus eksitasi (If). Fungsi penyesuaian arus eksitasi adalah untuk menjaga tegangan keluaran pada nilai pengenal. Bahkan ketika arus beban berubah, AVR tetap bertindak sebagai pengontrol tegangan. Alat kendali ini beroperasi berdasarkan sinyal tegangan keluaran yang diterima dari sensor tegangan, seperti pada Gambar 2.6, (Wibisono et al., 2024)

Gambar 2. 11 Hubungan Arus dan Tegangan luaran Generator (a) Gambar Rangkaian Ekivalen dengan Beban (b) Gambar Diagram Vektor Tegangan Sumber:(Wibisono et al., 2024)

Berdasarkan hukum ke-2 Kirchhoff yang menyatakan "Nilai Ω V akan sama dengan nol pada loop tertutup", maka persamaan tegangannya pada persamaan (2.1):

$$E = V + Ia(Ra + jXs) = V + \Delta V$$
(2.1)

Keterangan:

E = Tegangan induksi pada kumparan stator (Volt)

V = Tegangan terminal generator (Volt)

Ia = Arus beban pada kumparan stator (Ampere)

Ra = Resistansi kawat kumparan stator (Ω)

 $Xs = Reaktansi sinkron (= Xm + Xa) (\Omega)$

 ΔV = Drop tegangan pada kumparan stator (Volt)

2.1.9 Rugi-Rugi pada Generator

Rugi-rugi generator listrik sebagian dapat ditemukan dengan antara percobaan beban nol dan percobaan block rotor. Percobaan beban nol dapat

menentukan rugi-rugi rotasi generator. Pada saat generator dalam keadaan berbeban, seluruh daya listrik generator digunakan untuk mengatasi rugi-rugi tembaga dan rugi mekanik. dalam sistem konversi energi listrik yaitu dalam pengoperasian generator, total daya yang diberikan adalah sama dengan total daya yang diterima. Dan juga kerugian daya yang diberikan adalah sama dengan kerugian daya yang diterima, (Refaldi et al., 2022).

A. Impedansi

Impedansi atau biasa disebut dengan hambatan (Z) adalah nilai resistansi yang terukur pada kutub sinyal jack pada alat elektronik. Semakin besar hambatan (impedansi) maka akan makin besar tegangan yang dibutuhkan. Beberapa sumber mengatakan bahwa impedansi merupakan hasil reaksi hambatan (R) dan kapasitas elektron (C) Kapasistansi secara bersamaan.

$$Z = \frac{V}{1\sqrt{3}} \tag{2.2}$$

$$R = Z \times \cos \phi \tag{2.3}$$

Dimana:

 $Z = Impedansi(\Omega)$

V = Tegangan Sumber (Volt)

I = Arus (ampere)

 $\sqrt{3}$ = Menunjukkan 3 fhasa

B. Rugi Tembaga

Rugi-rugi tembaga merupakan belitan stator dari kawat aluminium yang biasa disebut dengan I²R yang dimana menunjukkan besaran daya yang berubah menjadi panas oleh tahanan dari konduktor tembaga atau aluminium. Total kerugian I²R adalah jumlah antara rugi I²R primer (stator) dan rugi I²R (rotor). Pada umumnya rugi-rugi belitan ini berkisar antara 30% dari total pada beban penuh dengan persamaan (2.5):

$$\Sigma P \text{ Rugi-rugi (Tembaga)} = I^2 R$$
 (2.4)

Rugi beban penuh=
$$\frac{\text{Rugi Tembaga}}{30\%}$$
 (2.5)

C. Rugi Mekanik

Rugi-rugi mekanik merupakan rugi-rugi antara gesekan dan angin yang dipakai dalam motor listrik untuk menanggulangi gesekan batalan poros, gesekan sikat melawan komutator atau slipring, gesekan dari bagian antara yang berputar terhadap angin, terutama pada daun kipas pendingin. Rugi-rugi mekanik dianggap konstan dari beban nol hingga beban penuh. Besaran rugi mekanik sekitar 20% dari rugi total pada beban penuh dengan persamaan (2.6).

$$Pm (Rugi Mekanik) = 20\% x Rugi Beban Penuh$$
 (2.6)

D. Rugi Besi

Besar rugi besi adalah sekitar 20 sampai 30% dari rugi total pada beban penuh yang dijabarkan dengan persamaan (2.7) dan (2.8):

Pb (Rugi Besi) =
$$30\%$$
 x Rugi beban penuh (2.7)

$$\Sigma$$
rugi Total = Rugi Tembaga + Rugi Mekanik+ Rugi Besi (2.8)

2.1.10 Efisiensi Generator

Efisiensi adalah salah satu parameter utama dalam penilaian kinerja generator sinkron, karena generator yang beroperasi dengan efisiensi tinggi dapat menghasilkan energi listrik yang lebih optimal. Efisiensi generator sinkron dipengaruhi oleh berbagai faktor, seperti desain mekanis, kualitas material, dan beban operasional. Salah satu referensi yang sering dijadikan acuan dalam industri adalah standar IEC 60034-1:2017, yang mengatur karakteristik teknis, pengujian, dan pengklasifikasian generator sinkron. Namun, dalam standar ini tidak ditemukan ketentuan yang secara eksplisit menyebutkan angka efisiensi generator sinkron, terutama angka yang menyatakan bahwa efisiensi sebaiknya di atas 85%. IEC 60034-1 lebih berfokus pada pengujian teknis terkait kinerja mekanis dan operasional generator, seperti dimensi, suhu operasi, dan kestabilan tegangan, tanpa menetapkan nilai minimum efisiensi tertentu.

Meskipun demikian, dalam praktiknya, banyak literatur dan panduan industri yang merekomendasikan efisiensi generator sinkron diatas 85% sebagai target untuk memastikan kinerja yang baik dan meminimalkan kehilangan daya. Rekomendasi ini sering digunakan dalam aplikasi industri tertentu di mana efisiensi operasional sangat berpengaruh pada penghematan energi dan biaya. Oleh karena

itu, angka efisiensi diatas 85% yang sering disebutkan dalam beberapa referensi teknis dapat dianggap sebagai standar praktik yang umum diterima dalam banyak aplikasi generator sinkron (Fadilah et al., 2024). efisiensi generator dihitung berdasarkan rasio antara daya keluaran dan daya masukan lalu dikali seratus persen dapat menggunakan persamaan (2.9):

$$\eta = \frac{\text{Pout}}{\text{Pin}} x \ 100\% \tag{2.9}$$

Dimana:

η = Efisiensi Generator

p out = Daya Keluaran Generator (MW)

p in = Daya Masukan Generator (MW)

2.1.10.1 Generator Tanpa Beban

Jika poros generator diputar dengan kecepatan sinkron dan rotor diberi arus medan If, maka tegangan E0 akan terinduksi pada kumparan jangkar stator sebesar :

$$E0 = c n \Phi \tag{2.10}$$

Dimana:

c = konstanta mesin

n = putaran sinkron

 Φ = fluks yang dihasilkan oleh If

Generator arus bolak-balik yang dioperasikan tanpa beban, arus jangkarnya akan nol (Ia = 0) sehingga tegangan terminal Vt = Va = Vo. Karena besar ggl induksi merupakan fungsi dari fluks magnet, maka ggl induksi dapat dirumuskan: $Ea = f N \Phi$, yang berarti pengaturan arus medan sampai kondisi tertentu akan mengakibatkan ggl induksi tanpa beban dalam keadaan saturasi.

2.1.10.2 Generator Berbeban

Tiga macam sifat beban jika dihubungkan dengan generator, yaitu beban resistif, beban induktif, dan beban kapasitif. Akibat pembeban ini akan berpengaruh terhadap tegangan beban dan faktor dayanya. Dalam keadaan berbeban arus jangkar akan mengalir dan mengakibatkan terjadinya reaksi jangkar. Reaksi jangkar bersifat reaktif karena itu dinyatakan sebagai reaktan dan disebut sebagai reaktan pemagnet (Xm). Reaktan pemagnet ini bersama sama dengan reaktan fluks bocor (Xa) dikenal sebagai reaktan sinkron (Xs). Pada saat generator dibebani akan terjadi drop tegangan sebelum terminal *output*. Besarnya *drop* tegangan ini sangat tergantung pada kondisi beban yang ada, (Prastya, 2016).

Adapun macam macam drop tegangan tersebut yakni :

- 1. Drop tegangan akibat tahanan jangkar (Ira)
- 2. Drop tegangan akibat reaktansi jangkar (Ixa)
- 3. Drop tegangan flux bocor (Ixl) Seperti telah dibahas, maka beban AC dapat digolongkan dalam 3 kondisi yaitu :

1. Beban Cos $\varphi = 1$

Beban Resistif adalah jumlah daya yang diperlukan untuk pembentukan medan magnet. Sifat beban resistif adalah arus beban resistif sefase dengan tegangannya atau faktor daya atau $\cos \varphi = 1$. Efek beban ini terhadap generator adalah putaran generator turun dan tegangan generator juga turun. Contoh dari beban resistif adalah lampu pijar dan alat pemanas, (Nurwidigdo, 2008 dalam Prastya, 2016).

$$E_0 = \sqrt{(V + 1Ra)^2 + (1(Xb + Xi))^2}$$
 (2.11)

2. Lagging

Beban Induktif adalah beban yang mengandung kumparan kawat yang dililitkan pada sebuah inti besi. Sifat beban induktif adalah arus beban induktif 90° ketinggalan terhadap tegangannya atau faktor daya: $\cos \varphi = 0$. Bila $\cos \varphi = 0$ maka $\sin \varphi = 1$ dan daya aktif menjadi nol daya reaktif maksimum. Efek beban ini terhadap generator adalah tegangan stator turun dan putaran tetap. Contoh dari beban induktif adalah kumparan, motor-motor listrik, dan lampu TL, (Nurwidigdo, 2008 dalam Prastya, 2016).

$$E_0 = \sqrt{(V\cos\varphi + 1Ra)^2 + (V\sin\varphi + 1(Xa + Xi))^2}$$
 (2.12)

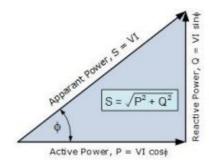
3 Leading

Sifat beban kapasitif adalah arus beban kapasitif 90° mendahului terhadap tegangannya atau faktor daya : $\cos \phi = 0$. Efek beban ini terhadap generator adalah akibatnya tegangan stator naik putaran tetap. Contoh dari beban kapasitif adalah kapasitor/kondensator. (Nurwidigdo, 2008 dalam Prastya, 2016)

$$E_0 = \sqrt{(V\cos\varphi + 1Ra)^2 + (V\sin\varphi - 1Xs)^2}$$
 (2.13)

2.1.7.3 Generator Beban Tidak Seimbang

Sifat terpenting dari pembebanan yang seimbang adalah jumlah phasor dari ketiga tegangan adalah sama dengan nol, begitupula dengan jumlah phasor dari arus pada ketiga fase juga sama dengan nol. Jika impedansi beban dari ketiga fase tidak sama, maka jumlah phasor dan arus netralnya (*In*) tidak sama dengan nol dan beban dikatakan tidak seimbang. Ketidakseimbangan beban ini dapat saja terjadi karena


hubung singkat atau hubung terbuka pada beban. Dalam sistem 3 fase ada 2 jenis ketidakseimbangan, yaitu:

- 1. Ketidakseimbangan pada beban, beban resitif
- 2. Ketidakseimbangan pada sumber listrik (sumber daya), beban kapasitif

Kombinasi dari kedua ketidakseimbangan sangatlah rumit untuk mencari pemecahan permasalahannya, oleh karena itu kami hanya akan membahas mengenai ketidakseimbangan beban dengan sumber listrik yang seimbang (Prastya, 2016).

2.1.8 Daya Listrik

Daya listrik didefinisikan sebagai laju hantaran energi listrik dalam sirkuit listrik. Satuan SI daya listrik adalah watt yang menyatakan banyaknya tenaga listrik yang mengalir per satuan waktu (joule/detik). Segitiga daya merupakan suatu konsep agar lebih mudah memahami hubungan antara tegangan, arus dan hambatan pada listrik. Besarnya arus berubah sebanding dengan tegangan (V) dan berbanding terbalik dengan beban seperti yang ditunjukkan pada Gambar 2.7.

Gambar 2.12 Segitiga Daya Sumber: (Tanjung,2010 dalam Prastya, 2016)

2.1.8.1 Daya Aktif

Didefinisikan sebagai daya listrik yang digunakan untuk keperluan menggerakkan mesin-mesin listrik atau peralatan lainnya. Dengan Rumus : (Tanjung, 2010)

$$P = V \times I \times Cos \emptyset$$
 (1 phase) (2.14)

$$P = \sqrt{3} \times V \times I \times Cos \emptyset$$
 (3 phase) (2.15)

Keterangan:

P = Daya Nyata (Watt)

V = Tegangan (Volt)

I = Arus yang mengalir pada penghantar (Ampere)

Cos Ø= Faktor Daya

2.1.8.2 Daya Semu

Daya semu merupakan daya listrik yang melalui suatu penghantar transmisi atau distribusi. Daya ini merupakan hasil perkalian antara tegangan dan arus yang melalui penghantar. Dengan Rumus : (Prastya,2016)

$$S = V \times I \text{ (1 phase)} \tag{2.16}$$

$$S = \sqrt{3} \times V \times I \text{ (3 phase)}$$
 (2.17)

Dimana:

S = Daya semu (VA)

V = Tegangan (Volt)

I = Arus yang mengalir pada penghantar (Ampere)

2.1.8.3 Daya Reaktif

Daya reaktif merupakan selisih antara daya semu yang masuk pada penghantar dengan daya aktif pada penghantar itu sendiri, dimana daya ini terpakai untuk daya mekanik dan panas. Daya reaktif ini adalah hasil kali antara besarnya arus dan tegangan yang dipengaruhi oleh faktor daya. Dengan Rumus: (Prastya,2016)

$$Q = V \times I \times Sin \emptyset$$
 (1 phase) (2.18)

$$Q = \sqrt{3} \times V \times I \times Sin \emptyset$$
 (3 phase) (2.19)

Dimana:

Q = Daya reaktif (VAR)

V = Tegangan (Volt)

I = Arus (Amper)

Sin Ø = Faktor Daya

2.1.9 Beban Listrik

2.1.9.1 Beban Resistif

Beban resistif yaitu beban yang hanya terdiri dari komponen tahanan ohm (*resistance*), seperti elemen pemanas (*heating element*) dan lampu pijar. Beban jenis ini hanya mengkonsumsi beban aktif dan mempunyai faktor daya sama dengan satu. Tegangan dan arusnya sefasa. Persamaan daya (2.20) (Prastya, 2016):

$$P = V.I \tag{2.20}$$

Dimana:

P = daya aktif yang diserap beban (watt)

V = tegangan yang mencatu beban (volt)

I = arus yang mengalir pada beban (ampere)

2.1.9.2 Beban Induktif

Beban induktif yaitu beban yang terdiri dari kumparan kawat yang dililitkan pada suatu inti, seperti coil, transformator dan solenoida. Beban ini dapat mengakibatkan pergeseran fasa (*phase shift*) pada arus sehingga bersifat *lagging*. Hal ini disebabkan oleh energi yang tersimpan berupa medan magnetis akan mengakibatkan fasa arus bergeser menjadi tertinggal terhadap tegangan. Beban jenis ini menyerap daya aktif dan daya reaktif. Persamaan (2.21) merupakan daya aktif untuk beban induktif (Prastya, 2016):

$$P = V.I.\cos \varphi \tag{2.21}$$

Dimana:

P = daya aktif yang diserap beban (watt)

V = tegangan yang mencatu beban (volt)

I = arus yang mengalir pada beban (ampere)

 Φ = sudut antara arus dan tegangan

Untuk menghitung besarnya reaktansi induktif (X_L) , dapat digunakan rumus :

$$X_L = 2\pi f L \tag{2.22}$$

Dimana:

 X_L = reaktansi induktif

F = frekuensi (Hz)

L = induktansi (Henry)

2.1.9.3 Beban Kapasitif

Beban kapasitif yaitu beban yang memiliki kemampuan kapasitansi atau kemampuan untuk menyimpan energi yang berasal dari pengisian elektrik (*electrical discharge*) pada suatu sirkuit. Komponen ini dapat menyebabkan arus leading terhadap tegangan. Beban jenis ini menyerap daya aktif dan mengeluarkan daya reaktif. Persamaan daya aktif untuk beban induktif menggunakan rumus di persamaan (2.22), (Prastya, 2016).

2.1.10 Perhitungan Daya Turbin

Untuk mendapatkan nilai entalpi dan entropi dapat menggunakan steam table yang bersifat saturated. Nilai spesifikasi turbin uap perlu diperhatikan terutama spesifikasi efisiensi isentropik (η t) dan kerja turbin (Wt) terhadap kemampuan operasional turbin uap (Danial et al., 2019). Pada perhitungan ini dapat menggunakan cara interpolasi dimana hal ini dimaksud untuk menentukan nilai yang berada di antara dua nilai yang diketahui. Interpolasi ini didasarkan pada teori perbandingan. Generator adalah konverter yang digunakan untuk mengubah energi kimia atau kinetik menjadi energi listrik pada sebuah pembangkit listrik. Generator memiliki peranan beserta fungsi yang sangat penting dalam kelangsungan proses kinerja sebuah pembangkit listrik (Nur et al., 2022). Adapun pada penelitian ini perbandingan yang dilakukan antara nilai tekanan uap masuk turbin dengan entalpi saturated vapor (s_1), nilai tekanan uap keluar turbin dengan entalpi saturated liquid (h_f), tekanan uap keluar turbin dengan entalpi saturated liquid (h_f), tekanan uap keluar turbin dengan entalpi saturated vapor (s_1), tekanan uap keluar turbin dengan entalpi saturated vapor (s_1), tekanan uap keluar turbin dengan entalpi saturated vapor (s_1), tekanan uap keluar turbin dengan entalpi saturated vapor (s_2), tekanan uap keluar

turbin dengan entropi *saturated liquid* (s_f) dan tekanan uap keluar turbin dengan entropi *saturated vapor* (s_g) , (Manangka et al., 2022).

$$\frac{(x-x_1)}{(x_2-x_1)} = \frac{(y-y_1)}{(y_2-y_1)} \tag{2.23}$$

Untuk mencari nilai dari kualitas uap dapat menggunakan persamaan (2.26):

$$x = \frac{(s_{1} - s_{f})}{(s_{g} - s_{f})} \tag{2.24}$$

Keterangan:

 S_1 = nilai entropi berdasarkan tekanan uap masuk turbin

 S_f = nilai entropi saturated liquid berdasarkan tekanan uap keluar turbin

 S_g = nilai entropi saturated vapor berdasarkan tekanan uap keluar turbin

Mencari nilai entalpi keluaran turbin dalam kondisi isentropis (h_2s) Untuk mencari nilai entalpi keluaran turbin dalam kondisi isentropis dapat menggunakan persamaan (2.25):

$$h_2 s = h_f + x. (h_q - h_f)$$
 (2.25)

Keterangan:

 h_f = nilai entalpi *saturated liquid* berdasarkan tekanan uap keluar turbin

x = nilai kualitas uap

 h_g = nilai entalpi $saturated\ vapor\$ berdasarkan tekanan uap keluar turbin

Untuk mencari nilai daya isentropis (W isentropis) dapat menggunakan persamaan (2.26):

$$W_{isentropis} = m. (h_1 - h_2 s) \tag{2.26}$$

Keterangan:

m = laju aliran uap

h1 = entalpi berdasarkan uap masuk turbin

 h_2s = entalpi keluar turbin dalam kondisi isentropis

Untuk mencari nilai daya actual (W Aktual) adalah dengan menggunakan persamaan (2.27):

$$W_{aktual} = (\eta_{turbin} x W_{isentropis})$$
 (2.27)

Keterangan:

 $\eta = Efisiensi \; turbin \;$

 $W_{isentropis} = Daya isentropis$

Sebelum mengetahui nilai W aktual maka nilai η_{Turbin} harus diketahui berikut cara untuk menghitung η_{Turbin} :

Perhitungan turbine heat rate (THR) dari data:

THR=
$$\frac{m_{Out}}{p_{in}}$$

THR =
$$\frac{m(h1-h2)}{Gross\ Output}$$

Data yang didapat pada setiap *performance test* diolah/dihitung *turbine heat* rate dan efisiensi turbin disetiap titik/ waktu pengambilan data, kemudian merataratakan hasil data keseluruhan.

Untuk mengetahui nilai efisiensi turbin digunakan persamaan (2.28):

$$\eta_{Turbin} = \frac{3600 \, kj}{THR} \times 100\% \tag{2.28}$$

2.2 Penelitian Terkait

Banyak penelitian yang mengkaji analisis fluktuasi beban pada generator.

Namun penelitian tersebut mempunyai karakteristik dan hasil yang berbeda.

Penelitian yang terkait dengan penelitian yang dilakukan sebagai berikut.

Tabel 2 .1 Penelitian Terkait

No	Judul Jurnal	Penulis, Tahun	Pembahasan Jurnal		
1	Analisis Pengaruh Beban Terhadap Efisiensi Generator Unit 2 PLTP PT. Indonesia Power UPJP Kamojang	(Muharri r & Hajar, 2019)	Penelitian membahas pengaruh fluktu beban terhadap efisiensi genera sinkron, dengan landasan teori yang fol pada hubungan antara variasi beban di kinerja generator. Penelitian ini dilakuk di PLTP PT. Indonesia Power Kamoja dilakukan di unit 2 Kamojang Ha analisis menunjukkan bahwa efisie rata-rata generator unit 2 pada bu Februari 2019 adalah 92,89%, sedikit bawah efisiensi desain sebesar 98,4 Meskipun mengalami penurunan, efisie generator masih tergolong baik di mampu memasok listrik ke jaring Penurunan efisiensi ini perlu menj perhatian untuk dilakukan pemelihara agar generator dapat terus beroper secara optimal dan efisien.		
2	Analisa Pengaruh Perubahan Beban terhadap Efisiensi Generator Sinkron 3 Fasa di PLTP Lahendong Unit 3	(Manang ka et al., 2022)	Penelitian ini menjelaskan bahwa semakin tinggi nilai beban yang dihasilkan oleh generator maka efisiensi yang diperoleh akan semakin besar, dan semakin rendah nilai beban yang dihasilkan oleh generator maka efisiensi yang dihasilkan oleh generator akan semakin menurun. Ketika nilai beban yang dihasilkan generator paling tinggi yaitu 19 MW maka efisiensi yang diperoleh mencapai 88%. Sedangkan ketika nilai beban yang diperoleh sebesar 12 MW, efisiensi yang dicapai hanya sebesar 56%. Oleh karena itu, tingkat efisiensi generator dipengaruhi oleh besar kecilnya beban yang dihasilkan oleh generator tersebut. Perubahan beban yang		

			terjadi pada generator disebabkan oleh faktor rugi-rugi pada generator, antara lain rugi-rugi panas pada belitan (winding), rugi-rugi pada inti (core) generator, serta rugi-rugi mekanis akibat gesekan dengan udara pada saat berputar. Kehilangan panas dari inti dan belitan generator dipengaruhi oleh sistem pendingin generator.
3	Analisis Efisiensi Generator Pada Unit 1 Pembangkit Listrik Tenaga Uap 2x25 MW PT. Rekind Daya Mamuju	(Wildani et al., 2021)	Penelitian ini berfokus pada penurunan efisiensi generator di PLTU Mamuju, khususnya akibat derating dan trip yang mempengaruhi efisiensi unit secara keseluruhan. Perhitungan efisiensi dilakukan dengan menggunakan Matlab R2016a dengan data output generator untuk beban 50%, 80%, dan 100% untuk menentukan efisiensi optimal, yang ditemukan sebesar 97,5236% pada beban ekonomis 80%. Penelitian ini berlangsung selama 15 hari, dengan efisiensi yang menurun seiring bertambahnya beban. Output terukur generator adalah 25 MW, Analisis efisiensi pada tingkat beban yang berbeda menunjukkan bahwa efisiensi optimal dicapai pada beban ekonomis 80%.
4	Analisis Fluktuasi Beban Terahadap Efisiensi Generator Sinkron Di PT. Pembangkit Listrik Palembang Jaya	(Refaldi et al., 2022)	Penelitian ini membahas kinerja sebuah generator sinkron dapat diukur dengan perhitungan efisiensi perbandingan antara daya input pada generator dan daya output generator. PT. Pembangkit Listrik Palembang Jaya memiliki generator sinkron yang tersambung secara sinkronisasi pararel yang dihidupkan secara nonstop atau terus menerus. Suatu efisiensi generator sinkron dapat dipengaruhi oleh jumlah pembebanan dan faktor daya berupa naik turunnya nilai cos phi pembebanan. Menurunnya faktor daya (Cos phi) akan mengakibatkan turunnya sebuah efisiensi. PT. PLPJ menggunakan nilai cos phi 0.85 dan untuk nilai cos phi optimal pada generator PT. PLPJ sebesar 0.90. Semakin besarnya pembebanan maka akan semakin turunnya sebuah

			efisiensi. Begitu pula sebaliknya, semakin			
		kecilnya pembebanan maka akan naiknya				
			efisiensi.			
5	The effect of power factor on the performance of hydro power three-phase synchronous generator under inductive load	(Arifin Wibison o et al., 2023)	Penelitian ini meliputi hasil simulasi dan pengujian laboratorium. Hasil pengujian menunjukkan bahwa penambahan beban resistif memberikan hasil yang lebih baik dalam pembentukan gelombang tegangan output. Beban resistif secara signifikan berdampak pada generator kecepatan dan tegangan terminal, sehingga membutuhkan operasi yang tepat untuk stabilitas generator sinkron tiga fase. Berdasarkan hasil pengolahan data simulasi, pembangkit listrik tenaga air ditemukan bahwa generator sinkron tiga fasa dengan beban resistif-induktif menghasilkan lebih baik bentuk gelombang tegangan keluaran yang lebih baik. Beban resistif mempengaruhi pembentukan tegangan terminal generator sinkron sedangkan beban induktif menyebabkan bentuk gelombang arus tertinggal dari tegangan terminal. Beban resistif mempengaruhi penurunan kecepatan generator, sehingga diperlukan penyesuaian arus jangkar pada motor DC.			
6	Virtual synchronous generator: Modifications, stability assessment and future applications	(Cheema et al., 2022)	Jurnal ini membahas pengendali Generator Sinkron Virtual (VSG) sebagai solusi untuk masalah stabilitas yang timbul dari meningkatnya integrasi pembangkit listrik terdistribusi (DG) yang menggunakan sumber energi terbarukan. Dengan karakteristik inersia dan redaman yang rendah atau bahkan tidak ada pada DG, sistem tenaga mengalami masalah stabilitas yang serius. Makalah ini memberikan tinjauan literatur yang mendalam tentang VSG, termasuk modifikasi dan perbaikan teknik pengendalian VSG, serta analisis stabilitasnya. Diskusi juga mencakup aplikasi VSG pada sistem fotovoltaik, angin, dan saluran transmisi, serta masalah kritis seperti stabilitas frekuensi, tegangan, daya, dan integrasi paralel.			

7.	Efficiency Control For Permanent Magnet Synchronous Generators	(Di Tommas o et al., 2006)	Akhirnya, makalah ini menyarankan arah penelitian masa depan, seperti pengembangan antarmuka standar, kontrol terpusat, metode pemodelan standar, sistem penyimpanan energi yang efisien, dan evaluasi sistem yang standar. Penelitian ini memperkenalkan model dinamis permanent magnet synchronous generators (PMSG) yang mempertimbangkan rugi-rugi besi serta strategi kontrol "loss-model" untuk meminimalkan rugi-rugi listrik, termasuk rugi-rugi tembaga dan besi, melalui pengendalian vektor ruang arus stator. Dengan memanfaatkan pelemahan medan dan reluktansi, serta memaksimalkan torsi elektromagnetik, efisiensi generator dapat ditingkatkan secara signifikan. Teknik minimisasi rugi-rugi yang diusulkan ini fleksibel, sederhana, dan hanya
			memerlukan pengetahuan dasar parameter mesin, serta terbukti lebih efektif dibandingkan metode kontrol tradisional.
8	An Isolated Three-Phase Induction Generator System With Dual Stator Winding Sets Under Unbalanced Load Condition	(Moradia n & Soltani, 2015)	Penelitian ini menjelaskan sistem generator terisolasi tiga fase (IGS) berbasis DWIG yang menggunakan mesin induksi sangkar enam fase dengan dua lilitan stator tiga fase terpisah. Lilitan stator pertama terhubung ke STATCOM SV-PWM untuk mengeksitasi mesin, sementara lilitan stator kedua terhubung langsung ke beban. Frekuensi referensi STATCOM disesuaikan dengan frekuensi keluaran generator. Sepasang pengendali PI mengatur komponen simetris positif (PSC) dari tegangan keluaran, sementara pasangan pengendali PI kedua menghilangkan komponen simetris negatif (NSC) dan osilasi frekuensi ganda pada daya aktif. Selain itu, pengendali PI terpisah digunakan untuk mengatur tegangan jalur DC STATCOM. IGS ini diuji secara teoritis melalui simulasi dan secara praktis dengan pengaturan eksperimen, menunjukkan efektivitasnya

	berdasarkan	hasil	simulasi	dan
	eksperimen.			

- Tabel 2. 1 Penelitian terkait berfungsi untuk analisa dan menambah pembahasan penelitian, serta membedakannya dengan penelitian yang sedang dilakukan. Dalam penelitian ini disertakan 4 jurnal internasional dan 4 jurnal nasional Tabel 2.1 yang berhubungan dengan konsep generator sinkron diantaranya sebagai berikut :
- 1. Metode penelitian yang digunakan dalam penelitian Tabel 2.1 nomor 1 akan digunakan sebagai patokan peneliti untuk melakukan penelitian yaitu dengan melakukan pengambilan data dan mengitung efisiensi pada generator. Perbedaan penelitian ini dengan penelitian tersebut yaitu penelitian ini mengambil data di PT PLN Indonesia Power UBP Kamojang unit 1. Sehingga penelitian tersebut akan dijadikan referensi teori dalam melakukan penelitian.
- 2. Metode penelitian yang digunakan dalam penelitian Tabel 2.1 nomor 2 akan digunakan sebagai patokan penelitian dalam menghitung efisiensi dari generator sinkron dan menghitung rugi-rugi yang ada pada generator, Sehingga penelitian tersebut akan dijadikan referensi teori dalam melakukan penelitian.
- 3. Metode penelitian yang digunakan dalam penelitian Tabel 2.1 nomor 3 berfokus pada penurunan efisiensi generator, khususnya akibat derating dan trip yang mempengaruhi efisiensi unit secara keseluruhan. Perhitungan efisiensi dilakukan dengan menggunakan Matlab R2016a, karena penulis dalam perhitungannya menggunakan manual tidak menggunakan software.

- Sehingga penelitian tersebut akan dijadikan referensi teori dalam melakukan penelitian.
- 4. Penelitian pada Tabel 2.1 nomor 4 akan digunakan sebagai patokan peneliti untuk melakukan penelitian yaitu dengan melakukan pengambilan data dan mengitung efisiensi pada generator pembangkit. Perbedaan penelitian ini dengan penelitian tersebut yaitu penelitian ini mengambilan data di PT PLN Indonesia Power UBP Kamojang unit 1. Sehingga penelitian tersebut akan dijadikan referensi teori dalam melakukan penelitian.
- 5. Penelitian pada Tabel 2.1 nomor 5 yaitu menunjukkan bahwa penambahan beban resistif memberikan hasil yang lebih baik dalam pembentukan gelombang tegangan *output*. Beban resistif secara signifikan berdampak pada generator kecepatan dan tegangan terminal, sehingga membutuhkan operasi yang tepat untuk stabilitas generator sinkron tiga fase. Sehingga penelitian tersebut akan dijadikan referensi teori dalam melakukan penelitian. Perbedaan penelitian ini dengan penelitian tersebut terdapat pada fokus penelitiannya.
- 6. Penelitian Tabel 2.1 pada nomor 6 membahas pengendali Generator Sinkron Virtual (VSG) sebagai solusi untuk masalah stabilitas yang timbul dari meningkatnya integrasi pembangkit listrik terdistribusi (DG) yang menggunakan sumber energi terbarukan. Sehingga penelitian tersebut akan dijadikan referensi teori dalam melakukan penelitian. Perbedaan penelitian ini dengan penelitian tersebut terdapat pada fokus penelitiannya.
- 7. Penelitian Tabel 2.1 pada nomor 7 membahas model dinamis *Permanent*Magnet Synchronous Generator (PMSG) yang mempertimbangkan rugi-rugi

besi serta strategi kontrol "*loss-model*" untuk meminimalkan rugi-rugi listrik, termasuk rugi-rugi tembaga dan besi, melalui pengendalian vektor ruang arus stator. Sehingga penelitian tersebut akan dijadikan referensi teori dalam melakukan penelitian. Perbedaan penelitian ini dengan penelitian tersebut terdapat pada fokus penelitiannya.

8. Peneliian Tabel 2.1 pada nomor 8 ini membahas sistem generator terisolasi 3 fasa (IGS) berbasis *dual stator winding induction generator*. Efektivitas dan kemampuan dari IGS yang diusulkan telah diverifikasi dengan sangat baik melalui hasil simulasi dan eksperimen. Sehingga pada penelitian ini akan menjadi referensi teori dalam melakukan penelitian. Perbedaan penelitian ini yaitu terdapat pada fokus penelitiannya.