
BAB III METODOLOGI PENELITIAN

3.1. Diagram Alir (Flowchart)

Gambar 3.1. Flowchart Penelitian

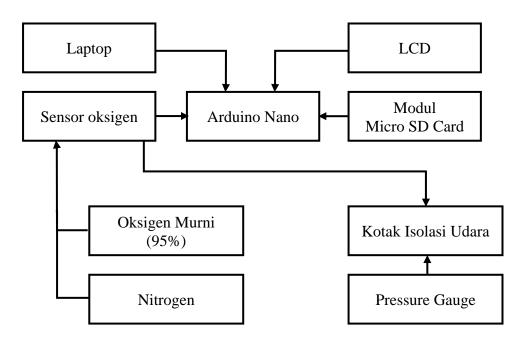
3.1.1. Studi Literatur

Studi literatur dilakukan agar dapat lebih memahami tentang permasalahan dan teori dasar mengenai proses kinerja modul baterai aluminium-udara yang diberikan variasi konsentrasi oksigen. Selain itu studi literatur ini dilakukan untuk memahami karakteristik *Cyclic Voltammetry*, *Electrochemical Impedance Spectroscopy* dan *Battery Testing System* sebagai tahapan pengujian kinerja modul baterai aluminium-udara, serta studi literatur ini dilakukan untuk mendapatkan teori-teori yang menunjang dengan pembahasan Tugas Akhir baik dari jurnal dan buku sebagai referensi penulis.

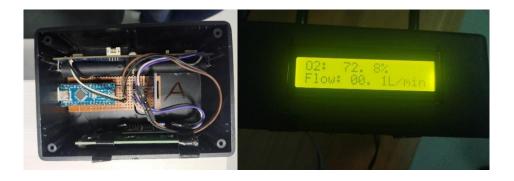
3.1.2. Persiapan Penelitian alat dan bahan

Alat dan bahan yang digunakan pada penelitian ini sebagai berikut:

Tabel 3.1. Daftar alat dan bahan yang digunakan


Alat	Jumlah	Fungsi					
Alat Suntik	1 buah	Menyuntikan elektrolit ke					
Alat Sullik	1 Ouan	baterai Aluminium-udara					
		Mengukur dalam pembuatan					
Gelas Ukur	2 buah	cairan elektrolit dan pembuatan					
		katoda udara					
Plastik Warp	Secukupnya	Menutupi elektrolit ketika stiring					
Multimeter	1 buah	Untuk mengukur tegangan					
	1 Juan	baterai					
		Untuk menjalankan software					
Komputer	1 buah	pengujian baterai (CV, EIS dan					
		BTS)					
Micro SD	1 buah	Sebagai data logger display					
WICIO SD	1 Duan	oksigen					
Card Reader	1 buah	Untuk membaca microSD di					
	1 Juan	komputer					

Alat	Jumlah	Fungsi						
Vohal Irmana	Casulmanus	Sebagai extender katoda dan						
Kabel Jumper	Secukupnya	anoda baterai						
		Untuk mencampurkan bahan						
Magnetic Stiring	1 buah	pembuatan katoda udara dan						
		elektrolit						
		Untuk mengukur bahan						
Timbangan Digital	1 buah	pembuatan katoda udara dan						
		elektrolit						
Mini Grinder	1 buah	Untuk memotong aluminium						
		Untuk menghilangkan kadar						
Furnace	1 buah	cairan pada katalisis katoda						
		udara						
PalmSens4	1 buah	Untuk menguji CV dan EIS						
Kotak Isolasi Udara	1 buah	Sebagai media dari objek						
Kotak Isolasi Odala	1 Duan	penelitian						
Selang	secukupnya	Sebagai jalan masuk oksigen						
Keran	3 buah	Sebagai stopper udara masuk						
rectuit	3 ouum	dan keluar						
Dart Keran dan selang	secukupnya	Untuk menyambungkan selang						
Dart Retail dail setting	зесикирпуи	ke media penelitian						
Pressure Gauge	1 buah	Untuk mengukur tekanan dalam						
Tiessure Gauge	1 Odan	kotak						
Regulator Gas	2 buah	Untuk mengatur keluaran						
Regulator Gas	2 ouan	oksigen dan nitrogen						
Bahan	Jumlah	Fungsi						
Arduino Nano	1 buah	Sebagai controller display						
/ Maumo Mano	1 Ouall	konsentrasi oksigen						
Sensor Oksigen (OCS-	1 buah	Untuk mengukur konsentrasi						
3F)	1 Juan	oksigen						


Bahan	Jumlah	Fungsi					
Modul Micro SD	1 buah	Sebagai penyimpanan data					
Woddi Wicio SD	1 oddii	logger sementara					
		Untuk menampilkan data					
Modul LCD	1 buah	konsentrasi dan laju aliran					
		oksigen					
Junction Box	1 buah	Sebagai wadah display oksigen					
Sel Baterai	9 buah	Sebagai objek penelitian					
Aluminium Udara	Jouan						
Elektrolit	1 ml/sel	Untuk aktivasi baterai					
Licktront	1 1111/301	aluminium udara					
Oksigen Murni	secukupnya	Sebagai objek penelitian					
Nitrogen	secukupnya	Sebagai campuran oksigen					
Karet Gasket	secukupnya	Untuk mencegas oksigen keluar					
Kalet Gasket	secukupiiya	kotak					
Lem Gasket	secukupnya	Untuk membuat gasket (o-ring)					
Leni Gasket	эссикирпуа	pada kotak					

Tabel 3.1. menyajikan daftar alat dan bahan yang digunakan berikut dengan fungsinya dalam pengujian baterai alumnium udara.

3.1.3. Display Konsentrasi Oksigen

Gambar 3.2. Diagram Blok Alat Display Konsentrasi Oksigen

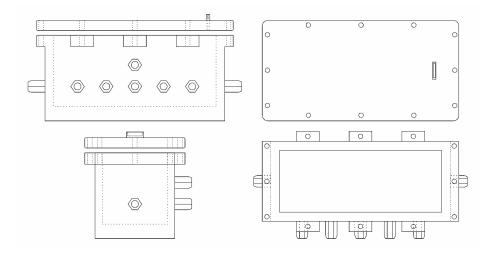
Gambar 3.3. Realisasi Alat Display Konsentrasi Oksigen

Gambar 3.2 menunjukan diagram blok dari sistem *display* konsentrasi oksigen dihubungkan dengan oksigen dan nitrogen. Gambar 3.3 merupakan bentuk nyata komponen dari display konsentrasi oksigen dan tampilan pada layer LCD. Dimana alat pengukuran yang terdiri dari arduino nano yang terhubung dengan sensor oksigen, dan modul sd card. Laptop digunakan sebagai catu daya bagi arduino nano dan input program, LCD akan menampilkan konsentrasi oksigen dan laju aliran oksigen. Pada input sensor

oksigen akan terhubung dengan selang cabang antara oksigen dan nitrogen. Pada output akan terhubung dengan bagian input kotak isolasi udara. Pressure Gauge akan terhubung dengan bagian dekat output untuk mengukur tekanan dalam kotak. Modul sd card akan diisi micro sd yang nantinya sebagai media penyimpanan sementara untuk data konsentrasi oksigen dan laju aliran oksigen.

3.1.3.1. *Error Checking*

Error Checking dilakukan untuk memastikan konsentrasi oksigen dibaca oleh sensor oksigen yang satu dengan yang sensor oksigen lainnya relatif sama, dengan indikasi selisih pembacaan tidak lebih dari 5%. Maka dari itu dilakukan error checking dengan cara menghubungkan sensor oksigen pada input dan output kotak untuk melihat apakah ada selisih antara oksigen yang masuk ke kotak dengan yang keluar dari kotak.


Berikut adalah hasil dari error checking yang telah dilakukan:

Tabel 3.2. Hasil *error checking* sensor OCS-3F

N_2	O_2	Input (%)	Output (%)	Selisih
(L/min)	(L/min)			(%)
1	1	32	30	2
0,5	0,6	33,5	31	2,5
0,5	1,5	64,2	61,9	2,3
0,5	1	44,9	43,5	1,4
0,5	2	74,7	72,9	1,8
0	1	95,6	95,0	0,6
0,8	0,5	21,4	21	0,4

Melihat dari data selisih, didapatkan data berupa racikan oksigen dan nitrogen sudah mendekati kebutuhan pengujian dan sensor oksigen layak digunakan. Dari tabel 3.2 akan dijadikan acuan untuk membuat variasi konsentrasi oksigen untuk pengujian *Cyclic Voltammetry, Electrochemical Impedance Spectroscopy* dan *Battery Testing System*.

3.1.4. Kotak Isolasi Udara

Gambar 3.4. Model 2 Dimensi (wireframe) Kotak Isolasi Udara

Gambar 3.5. Realisasi Kotak Isolasi Udara

Gambar 3.4 menunjukan rancangan 2 dimensi dari kotak isolasi udara yang kemudian direalisasikan menggunakan bahan *Solid Polyethylene PE Nylon* seperti pada gambar 3.5. Bahan nylon ini dipilih karena mudah dibubut dan lebih murah dibandingkan bahan logam. Kotak ini digunakan sebagai media pengujian baterai aluminium udara, prinsip kerja kotak isolasi udara

adalah mengisolasi Oksigen dengan beberapa variasi konsentrasi yang dipadukan dengan Nitrogen kemudian terdapat *pressure gauge*, dan disamping akan dialirkan ke *display* oksigen.

3.1.4.1. Uji Ketahanan

Kotak isolasi ini diuji coba sebelum digunakan, dengan pengujian menahan tekanan mulai dari 10 psi, setelah diisi dengan udara sebanyak 10 psi terdapat slip pada gasket karena udara yang mendorong keluar. Didapatkan bahwa kotak tersebut mampu menahan hingga 9 Psi tapi hanya 30 menit. Kemudian tekanan diperkecil ke 5 Psi, setelah dipastikan mampu menahan tekanan tersebut selama 1 jam, maka kotak akan direndam dalam air untuk memastikan tidak ada kebocoran minor disekeliling gasket dan dart. Tahap akhirnya adalah membiarkan kotak tersebut tertutup hingga ±2 hari, karena pengujian BTS akan memakan waktu lebih dari 24 jam.

Tabel 3.3. Hasil uji ketahanan kotak isolasi

Tekanan	Waktu	Kebocoran	Keterangan
10	0 detik	Ya	Overload
			Udara dalam
9	1 jam	Ya	kotak berangsur
			berkurang
5	1 jam	Tidak	Stabil

Tabel 3.3 menunjukan data dari pengujian ketahanan kotak isolasi mehanan tekanan dari udara yang telah dimasukan.

3.1.5. Pembuatan Sel Baterai Aluminium Udara

3.1.5.1. Anoda

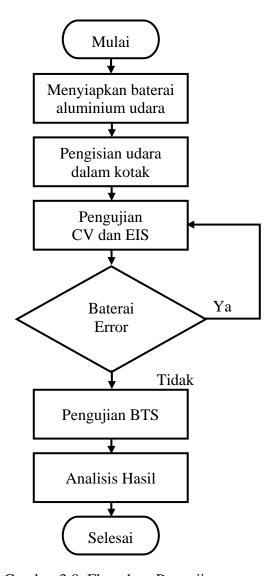
Gambar 3.6. Plat Aluminium sebagai Anoda

Gambar 3.6 menunjukan plat aluminium, dimana ukuran dimensi menyesuaikan dengan baterai yang sudah ada di laboratorium yaitu 6,5x5,5 cm.

3.1.5.2. Katoda Udara

Gambar 3.7. Katoda Udara dengan Lapisan Katalis TiO₂

Gambar 3.7 Menunjukan katoda udara yang terbuat dari *stainless steel mesh* dan lapisan katalis dari TiO₂. Bahan dari katalisnya adalah NMP, *Carbon Black*, PVdF, TiO₂. Semua bahan dicampur ke dalam gelas ukur dan diaduk di suhu 80°C hingga tercampur. Pemotongan *stainless steel mesh* sesuai dimensi katoda, apabila ukuran belum

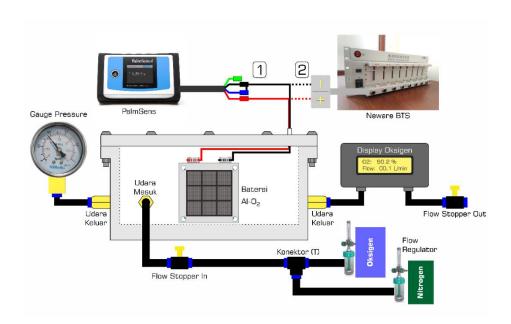

sesuai maka dilakukan pemotongan ulang, kemudian setelah ukuran sudah sesuai maka bisa digunakan untuk dilakukan pelapisan. Setelah semua bahan siap, dilanjutkan dengan proses pelapisan *stainless steel mesh* dengan campuran katalis setebal 1mm. Kemudian dijemur hingga kering dan dilanjutkan dengan pengeringan lanjutan menggunakan furnace di suhu 105°C selama 24 jam.

3.1.5.3. Parameter Baterai Layak Uji

Quality control (QC) dilakukan agar pengujian baterai aluminium udara menggunakan sel yang setara dan spesifikasi bahan yang sama. QC meliputi:

- 1. Dimensi elektroda 6,5x5,5 cm, dan dimensi separator 7x6cm
- Ketebalan coating lapisan katalis pada mesh tidak lebih dari
 1mm
- 3. Lapisan katalis tidak mudah terkelupas sebelum dan sesudah *furnace*
- 4. Permukaan aluminium bersih dari residu
- 5. Tegangan baterai setelah *resting* adalah 1,1-1,2 V.

3.1.6. Pengujian CV, EIS dan BTS



Gambar 3.8. Flowchart Pengujian

Gambar 3.8 menunjukan diagram alur mengenai tahapan pengujian *cyclic voltammetry, electrochemical impedance spectroscopy,* dan *battery testing system.* Pengujian CV, EIS dan BTS diperlukan dengan beberapa tahapan diantaranya:

1. Setelah baterai disuntikan 1 ml elektrolit akan *resting* (didiamkan) selama 3 jam, setelah itu dilakukan uji EIS sebelum dimasukkan

- kedalam kotak guna mengecek apakah baterai siap di uji coba. Jika terdapat *error* maka *resting* akan dilanjutkan selama 30 menit.
- 2. Pengujian variasi konsentrasi oksigen menggunakan oksigen murni untuk konsentrasi 90% dan campuran nitrogen untuk konsentrasi 70%, 60%, 40%, 30% dan 21%. Pengisian dilakukan setelah baterai siap dan penutup kotak tertutup rapat. Pembukaan keran regulator sesuai dengan panduan takaran dan membuka flow stopper out selama ±10 detik untuk memastikan tidak ada gas selain oksigen dan nitrogen.
- 3. Pengujian variasi tekanan menggunakan oksigen murni 90% dengan tekanan 3 Psi, 5 Psi dan 7 Psi. Konsentrasi 21% dengan tekanan 5 Psi.
- 4. Pengujian BTS dilakukan setelah mendapatkan kurva EIS dan CV yang berhasil (tidak ada *error*). Pengujian EIS dan CV dilakukan sebelum dan sesudah uji BTS.

Gambar 3.9. Alur Pengujian Baterai

Gambar 3.9 menunjukan alur pengujian baterai dengan peralatan dan bahan yang digunakan dalam pengujian untuk CV, EIS, dan BTS pada satu sel baterai aluminium udara dengan keterangan sebagai berikut:

Palmsens : Instrumen pengujian EIS dan CV

Neware BTS : Instrumen pengujian kapasitas baterai

Gauge Pressure : Alat ukur tekanan udara

Display Oksigen : Pengukuran konsentrasi dan laju aliran oksigen

Flow Stopper : Keran penutup saluran udara

Flow Regulator : Pengatur aliran keluaran oksigen dan nitrogen

Langkah-langkah pengujian:

1. Uji CV dan EIS sebelum uji BTS

- a. Sambungkan kabel positif ke capit merah dan kabel negatif ke capit biru dan capit hitam hitam Palmsens;
- Tunggu hingga tegangan baterai terbaca, kemudian sambungkan USB Palmsens ke USB laptop, koneksikan dengan software PSTrace dan jalankan pengukuran EIS. Estimasi waktu pengukuran adalah 20 menit;
- c. Setelah dipastikan tidak ada *error* pada kurva EIS, dilanjutkan dengan pengukuran CV dengan 6 kali *scan* atau lebih untuk mendapatkan kurva yang akurat.

2. Uji BTS

- a. Jepit kabel positif dan negatif sesuai dengan tanda pada capit neware;
- b. Cek pengukuran tegangan pada software Neware Client, jika sudah sesuai maka jalankan simulasi discharge dengan ketentuan output 10 mA. Proses discharge running ditandai dengan teks pembacaan tegangan berwarna merah.
- c. Tunggu hingga selesai, ditandai dengan teks kembali berwarna hijau. Kemudian open data untuk melihat hasil discharge.

3. Uji CV dan EIS setelah uji BTS

a. Sambungkan kabel positif ke capit merah dan kabel negatif ke capit biru dan capit hitam hitam Palmsens;

- b. Tunggu hingga tegangan baterai terbaca, kemudian sambungkan USB Palmsens ke USB laptop, koneksikan dengan software PSTrace dan jalankan pengukuran EIS. Estimasi waktu pengukuran adalah 20 menit;
- c. Setelah dipastikan tidak ada *error* pada kurva EIS, dilanjutkan dengan pengukuran CV dengan 6 kali *scan* atau lebih untuk mendapatkan kurva yang akurat.

3.2. Analisis Hasil

Data dari hasil pengujian yang telah didapatkan dari pengujian EIS, CV dan BTS yang dilakukan pada baterai aluminium udara, di variasi konsentrasi dan tekanan. Data-data tersebut selanjutnya diolah menjadi grafik dan dianalisis, untuk dijadikan sebuah kesimpulan dari hasil percobaan yang telah dilakukan.

3.3. Waktu dan Tempat Penelitian

3.3.1 Tempat Penelitian

Kegiatan ini dilaksanakan di Laboratorium Material Elektrik Program Studi Teknik Elektro Fakultas Teknik Universitas Siliwangi, Kampus 2 Mugarsari Jln. Tamansari, Kelurahan Mugarsari, Kecamatan Tamansari, Kota Tasikmalaya.

3.3.2 Waktu Penelitian

Waktu penelitian kurang lebih 3 bulan yang bertempat di Laboratorium Material Elektrik, Universitas Siliwangi, berikut tabel jadwal kegiatan penelitian:

Tabel 3.4. Jadwal Kegiatan Penelitian

No.	Kegiatan	Bulan I			Bulan II			Bulan III					
		1	2	3	4	1	2	3	4	1	2	3	4
1.	Studi Literatur												
2.	Persiapan alat												
2.	dan bahan												
3.	Pengujian di												
	Laboratorium												
4.	Pengambilan												
	Data												
5.	Analisis Hasil												
6.	Membuat												
	Laporan												