BAB I PENDAHULUAN

1.1 Latar belakang

Indonesia merupakan negara dengan perkebunan kelapa terluas di dunia. Permintaan global akan produk kelapa senantiasa berubah dan merupakan potensi bagi Indonesia. Produksi kelapa Indonesia meningkat seiring dengan pertambahan luas perkebunan kelapa, dengan rata - rata pertumbuhan 0,006%. Rata-rata pertumbuhan ini lebih tinggi dari pada rata-rata dunia dan tepat untuk meningkatkan kembali produktivitas (Direktorat Jendral Perkebunan 2021). Pada tahun 2020 Indonesia memproduksi 2,8 juta ton kelapa dengan produktivitas 1,106 ton/ha. Luas perkebunan kelapa di Indonesia mencapai sekitar 3,57 juta ha atau 31% dari total areal kelapa di dunia. Salah satu produk olahan kelapa yang banyak dihasilkan oleh masyarakat adalah kopra yang merupakan produk setengah jadi (Yani dkk., 2022)

Karantina Pertanian Jambi mencatat kenaikan pesat ekspor komoditas pertanian pada semester I tahun 2023, kenaikan tertinggi dicetak oleh komoditas kopra yang volumenya naik hampir 900 persen. Berdasarkan data terintegrasi karantina *Integrated Quarantine System Fast Track* (IQ Fast) pada semester I 2023, ekspor kopra mencapai 2.800 ton, periode yang sama tahun 2022 volume ekspor kopra masih 287 ton. Peningkatan volume ekspor kopra mencapai delapan kali lipat atau 875,6 persen, maka dari itu kopra memiliki potensi atau daya jual yang tinggi, sehingga harus terciptanya kopra yang berkualitas dan berkuantitas tinggi (Kompas.,2023)

Kopra berasal dari daging buah kelapa (*Cocos nucifera L.*) dan umumnya digunakan sebagai bahan baku pembuatan minyak kelapa. Oleh masyarakat, kopra biasanya diproses secara tradisional. Pengeringan buatan atau penjemuran untuk menurunkan kadar air daging kelapa sekitar 50 % (b/b) menjadi 6 % (b/b) mencegah pembusukan oleh mikrobia, dan menaikkan kadar minyak. Jamur dapat merusak kopra dan sekaligus minyak yang dikandungnya sehingga kopra yang dihasilkan tidak dapat disimpan dalam waktu lama. Kenampakan luar kopra akibat serangan mikroorganisme antara lain permukaan berjamur, warna berubah menjadi gelap, dan berlendir. Apabila kopra telah mengalami kerusakan akibat serangan

mikroorganisme, maka kualitas kopra akan buruk dan sangat berpengaruh terhadap kwalitas minyak yang dihasilkan (Amperawati dkk., 2012).

Badan Standardisasi Instrumen Pertanian (BSIP) Riau (2023) telah melakukan revisi SNI Kopra (SNI 01-3946-1995), beberapa poin penting yang diidentifikasi terkait dengan spesifikasi mutu SNI Kopra diantaranya kadar air, kadar minyak, kadar asam lemak dalam minyak, benda asing, bagian berkapang, bagian berhama dan bagian yang cacat. Mutu kopra dibagi dalam grade 1, 2, dan 3. Disebutkan bahwa standar kadar air (% berat, maksimum) untuk ketiga grade adalah sama yaitu 6 %; kadar minyak (% berat basis kering, minimum) untuk grade 1, 2, dan 3 masing-masing 70 %, 68 %, dan 68 %; kadar asam lemak bebas (% laurat, berat maksimum) adalah 1 %, 3 %, dan 6 %; sedangkan serangan kapang dan jamur (% hitung) masing-masing 0 %, 4 %, dan 8%.

Saat ini industri kopra dihadapkan pada masalah mutu yang menyebabkan sangat rendahnya harga kopra di pasaran dunia. Pengawetan dengan cara pengasapan langsung sudah dilakukan oleh masyarakat untuk menghambat pertumbuhan mikrobia pada kopra. Selain melalui cara demikian kopra yang dihasilkan berwarna coklat kehitaman karena menyerap komponen tar yang terlalu banyak, flavor asapnya kuat, dan dapat menyebabkan polusi udara. Untuk menanggulangi masalah tersebut yaitu penggunaan asap cair yang didestilasi ulang agar kadar tar di dalam asap cair tersebut berkurang.

Asap cair dapat dimanfaatkan untuk berbagai keperluan, salah satunya untuk mengawetkan atau memperpanjang masa simpan suatu produk (Assidiq dkk., 2018). Senyawa asam yang terkandung dalam asap cair dapat menghambat terbentuknya spora dan pertumbuhan mikroba pada produk makanan, yaitu bakteri dan fungi. Senyawa fenolik asap cair memiliki sifat antibakteri dan antioksidan, serta menunjukkan aktivitas antimikroba yang efektif secara *in-vitro* terhadap berbagai organisme seperti bakteri (gram positif dan gram negatif), ragi dan kapang.(Suryani Ria dkk., 2020)

Menurut Nirwanto dkk., (2023) Limbah hasil kelapa berupa biomassa lignoselulosa dapat dilakukan dengan empat metode yaitu: fisika, kimia, termokimia dan biokimia. Metode konversi termokimia ini mencakup: pembakaran,

gasifikasi, pirolisis dan karbonisasi. Konversi biokimia atau proses ini mencakup: pengomposan, pembuatan silase, biomentasi (pembentukan biogas), fermentasi bioetanol. Pengolahan limbah cangkang kelapa melalui teknik pirolisis dapat menghasilkan asap cair, arang dan tar. Asap cair (liquid smoke) banyak diteliti sebagai pestisida botani dan memiliki bahan baku pun banyak yang tersedia lokal sehingga petani tidak perlu membudidayakan tanaman bioaktif tersendiri.

Salah satu bahan yang dapat digunakan sebagai penghasil asap cair adalah tempurung kelapa berasal dari limbah hasil pengolahan kopra. Menurut (Darmaji 1996), dibandingkan dengan asap cair dari jenis kayu lainnya, asap cair tempurung kelapa mempunyai kelebihan dalam menghambat pertumbuhan bakteri pembusuk dan patogen. Dikatakannya pula asap cair mengandung asam yang cukup tinggi terutama asam asetat yang cukup potensial sebagai antimikrobia. Selain itu Darmaji, (1996) menyatakan bahwa asap cair tempurung kelapa terbukti mempunyai keistimewaan utama dalam hal intensitas warna, bau, serta cita rasa spesifik dan diikuti oleh kemampuan menghambat pertumbuhan jamur dan oksidasi lemak.

Albaki dkk., (2021) juga mengemukakan bahwa komponen-komponen kimia dalam asap sangat berperan dalam menentukan kualitas produk pengasapan karena selain membentuk flavor, tekstur dan warna yang khas, pengasapan juga dapat menghambat kerusakan produk oleh mikrobia. Asap cair mengandung senyawa fenol, asam, dan karbonil yang memiliki pengaruh kuat dalam menghambat pertumbuhan mikroorganisme, karena senyawa-senyawa tersebut mempunyai sifat sebagai antimikrobia dan antioksidan (Pszczola 1995). Dengan demikian pirolisat dan redistilat asap cair tempurung kelapa dapat menjadi salah satu bahan pencegah dan penghambat pertumbuhan mikroorganisme pada daging kelapa. Asap cair yang dihasilkan memiliki kualitas grade 3 dimana harus dimurnikan menggunakan metode distilasi. Distilasi dilakukan dua kali, yaitu distilasi pertama untuk menghasilkan asap cair grade 2 dan distilasi kedua untuk menghasilkan asap cair grade 1. Distilasi dilakukan dengan alat distilator kaca dengan suhu distilasi 100°-110°C Albaki dkk.(2021).

Lama pengeringan daging buah kelapa menjadi kopra sangat tergantung pada suplai panas yang di terima oleh daging buah kelapa, begitupun terhadap kualitas kopra, semakin tinggi panas yang disuplai maka daging buah kelapa yang dikeringan semakin cepat begitulah sebaliknya. Alat pengering menggunakan sumber panas dari energi biomassa mampu mengeringkan kelapa dalam waktu 12 jam dengan kadar air akhir sebesar 4,17%. Pengering dengan menggunakan sumber panas energi surya mampu mengeringkan kelapa dalam waktu 13 jam dengan kadar air akhir 4,13%. Hal ini dikarenakan distribusi panas energi surya lebih kecil dari pada energi biomassa, perbedaan suhu yang terjadi pada kedua sumber energi dengan perbandingan suhu rata rata tertinggi ruang pengering dengan sumber energi surya 49 °C sedangkan energi biomassa 55 °C. Warna kopra pengeringan energi surya terlihat lebih putih dibandingkan dengan warna kopra hasil pengeringan sumber panas energi biomassa (Ade dkk., 2019).

Daging buah kelapa yang direndam dalam pirolisat dan redistilat asap cair tempurung kelapa pada konsentrasi 10 % dengan lama perendaman 15 dan 30 menit tidak ditumbuhi oleh jamur (serangan jamur 0 %). Tidak adanya serangan jamur pada perlakuan tersebut karena adanya senyawa fenol dan asam asetat yang terkadung dalam pirolisat dan rediatilat asap cair yang dapat berfungsi untuk menghambat pertumbuhan mikrobia termasuk jamur. Hasil pengujian kualitas kopra pada berbagai kombinasi perlakuan jenis asap cair, konsentrasi dan lama perendamannya ditunjukkan paling baik pengaruhnya pada konsentrasi 10% asap cair dengan lama perendaman 15 menit dan 30 menit (Amperawati dkk., 2012)

1.2 Identifikasi masalah

Berdasarkan latar belakang, maka dapat diidentifikasikan masalah sebagai berikut:

- 1) Apakah kombinasi konsentrasi dan lama perendaman larutan asap cair tempurung kelapa berpengaruh sebagai antimikroba terhadap kualitas kopra?
- 2) Pada kombinasi konsentrasi dan lama perendaman larutan asap cair tempurung kelapa berapakah yang berpengaruh paling baik sebagai antimikroba terhadap kualitas kopra?

1.3 Maksud dan tujuan penelitian

Maksud penelitian ini untuk menguji pemberian konsentrasi antimikroba asap cair dari tempurung kelapa pada kopra dalam proses pengeringan menggunakan energi surya, dengan lama perendaman daging buah kelapa segar di dalam larutan asap cair tempurung kelapa. Tujuan penelitian ini untuk mengetahui pengaruh kombinasi konsentrasi dan lama perendaman asap cair tempurung kelapa terhadap pertumbuhan jamur pada daging kelapa yang berpengaruh terhadap kualitas kopra, juga untuk mengetahui pengaruh kombinasi dan lama perendaman yang berpengaruh paling baik terhadap kualitas kopra.

1.4 Manfaat penelitian

Manfaat dari penelitian ini yaitu memperoleh informasi bagi:

- 1) Perkembangan IPTEK, khususnya dalam proses pengolahan daging kelapa menjadi kopra yang berkualitas.
- 2) Penulis mendapatkan ilmu, pengetahuan dan pengalaman baru sehingga penulis berencana akan mengamalkan ilmu dari penelitian ini agar di adopsi oleh lembaga pesantren yang telah membiayai penulis lanjut studi di pascasarjana, dikarenakan lembaga pesantren memiliki tanah wakaf yang banyak di tanami pohon kelapa, sehingga penulis berharap bisa membantu meningkatnya perekonomian pesantren lewat inovasi pembuatan kopra dengan menggunakan asap cair sebagai antimikroba.
- Masyarakat, penulis berharap penelitian ini menjadi informasi baru bagi masyarakat yang belum mengetahuinya, sebagai informasi yang bisa di adopsi untuk pengembangan usaha kopra bagi masyarakat yang sudah melakukan pembuatan kopra secara tradisional yang masih menggunakan pengeringan dengan pengasapan. Penulis sangat berharap, banyak masyarakat yang tertarik menjadi pengrajin kopra, untuk menaikkan taraf perekonomian masyarakat dan menambah nilai jual produk hasil kelapa.