BAB I PENDAHULUAN

1.1. Latar Belakang

Penggunaan pestisida kimia memiliki residu bahan kimia berbahaya pada tanaman dan bahan pangan, oleh karena itu diperlukannya suatu alternatif pengendalian penyakit yang ramah lingkungan dan tidak membahayakan bagi mahluk hidup. Dalam penggunaan bahan aktif pengendali, perlu dilakukan sebuah efikasi pada tanaman atau pun bahan pangan yang digunakan. Uji efikasi pada keputusan Menteri Pertanian Republik Indonesia Nomor 369/KPTS/SR.330/M/6/2020 memiliki pengertian yakni salah satu cara penilaian efektivitas pestisida terhadap organisme sasaran yang didaftarkan berdasarkan hasil percobaan lapangan, semi lapangan atau laboratorium menurut metode yang di tetapkan.

Peningkatkan produksi tanaman serealia terkendala dengan penurunan kualitas dan kuantitasnya. Penurunan tersebut karena banyak ditemukan biji serealia dalam keadaan tidak baik atau rusak. Rusaknya biji-bijian serealia ini ditandai dengan komoditas tidak baik, warna biji yang tidak seragam, adanya biji yang pecah serta kotoran lain yang berimplikasi pada rendahnya mutu biji-bijian tersebut. Penyimpanan merupakan salah satu cara untuk mengawetkan cadangan bahan makanan dari satu musim ke musim berikutnya. Biji-bijian menjadi bahan pangan yang disimpan secara lama. Banyak biji-bijian yang biasanya disimpan secara lama baik digunakan sebagai bahan pangan maupun sebagai benih tanaman diantaranya ada padi, jagung, gandum dan sorgum. Kualitas penyimpanan biji-bijian mencakup sisi keamanan pangan dari padi dan jagung terdiri dari kadar air yang harus lebih kecil dari 14%, sehingga tidak mudah terserang hama dan terkontaminasi fungi yang menghasilkan Mikotoksin yang merupakan senyawa beracun yang mampu mengurangi kesehatan (Haryadi, 2010).

Mikotoksin merupakan metabolit sekunder yang memiliki struktur molekul beragam pada kebanyakannya berbobot molekul kecil, oleh beberapa fungi berfilamen pada suhu dan kelembaban yang tepat untuk berkembang (Heidi *et al.*, 2016). Mikotoksin terutama *aflatoksin*, *citrinin*, *okratoksin*, dan *trichothecenes* sering di temukan dan mengkontaminasi bahan pangan dan pakan sehingga sangat berpengaruh pada kodisi fisik manusia maupun hewan (R. Russell and Nelson,

2010). Produk pangan yang terkontaminasi mikotoksin menjadi masalah serius bagi kesehatan manusia karena memiliki kandungan *toxigenic* (beracun), *nephrotoxic* (beracun bagi ginjal), *neurotoxic* (beracun bagi jaringan syaraf), *hepatotoxic* (beracun bagi hati/liver), *carcinogenic* (penyebab kanker), *immunosuppressive* (menekan respon kekebalan), *estrogenicgastro-intestinal toxicity* (beracun bagi sistem reproduktif dan pencernaan), dan *mutagenic* (memicu mutasi genetik) (Heidi *et al*, 2016)

Aflatoksin merupakan metabolit sekunder yang dihasilkan oleh fungi *A. flavus*. Indonesia memiliki iklim tropis dengan curah hujan, suhu, dan tingkat kelembaban relatif tinggi. Ini merupakan kondisi ideal bagi perkembangan *A. flavus* penghasil aflatoksin, oleh karena itu kontaminasi aflatoksin di Indonesia sulit untuk dihindari (Jun *et al.*, 2011). Aflatoksin termasuk salah satu mikotoksin yang harus diwaspadai kaerena *Aspergillus spp.* sebagai produsennya berpeluang besar meracuni padi, jagung, kedelai, dan kacang tanah yang merupakan bahan pangan dan pakan. *Aspergillus* merupakan jamur saprofit yang sehari-hari konidianya sangat berada di lingkungan, spesies yang kerap di temui di lingkungan yang memadai sehingga menyebabkan penyakit, diantaranya *Aspergillus fumigatus*, *Aspergillus niger*, *Aspergillus flavus*, dan *Aspergillus terreus* (Riaz *et al*, 2018).

Begitu bahayanya fungi yang menyerang bahan pangan mampu memicu adanya alfatoksin sehingga perlu melakukan pengendalian yang tentunya aman bagi bahan pangan maupun pakan. Dalam upaya pengendalian fungi tersebut khusus nya fung i *Aspergillus spp.*, perlu pengendalian menggunakan bahan alami yang ramah lingkungan dan juga aman konsumsi. Salah satu alternatif pestisida untuk mengatasi hal tersebut adalah dengan mengembangkan bahan bioaktif berasal dari tumbuhan, salah satu bahan bioaktif adalah asap cair (*liquid* smoke). Asap cair merupakan cairan kondensat dari asap yang telah mengalami penyimpanan dan penyaringan untuk memisahkan tar dan bahan—bahan partikulat. Asap cair sendiri mempunyai beragam manfaat dan telah diterapkan pada bermacam industri, diantaranya pada industri pangan, industri perkebunan dan industri kayu. Penggunaan asap cair pada pangan digunakan sebagai pengawet kerena sifat anti bakteri, anti oksidan dan pemberi rasa serta aroma (Nanik, 2008).

Penggunaan asap cair dengan bahan baku tempurung kelapa dan sekam memiliki kandungan antibakteri dan antifungi karena didalamnya mengandung senyawa seperti alkohol, fenol dan asam organik. Senyawa tersebut berperan sebagai antimikrobia (Dewi, 2020). Senyawa yang mendominasi (sekitar 50%) adalah asam asetat. Asam asetat sendiri mampu menekan pertumbuhan mikroorganisme yang berkembang, sedangkan alkohol merupakan senyawa yang berfungsi sebagai denaturasi protein, sehingga dapat merusak membran sel (Corryanti dan Frida, 2015). Sementara fenol adalah senyawa desinfektan yang dapat menghambat aktivitas enzim.

Asap cair dari serbuk gergaji campuran kayu akasia dan kayu laban berperan sebagai antifungi dengan konsentrasi asap cair sebesar 2% mempunyai kemampuan yang kuat menghambat pertumbuhan fungi *Ophiostoma polonicum, O. flexuosum, O. narcissi* dan *O.tetropii* (Oramahi *et al.*, 2011). Asap cair terindikasi mulai menghambat *Colletoricum gleosporoides* dan *Fusarium oxyporum* pada konsentrasi 0,25% (Imas *et al.* 2013). Konsentrasi terbaik penggunaaan asap cair food grade untuk pengawetan ada pada konsentrasi 15% (Jamilatun *et al.* 2016). Mekanisme aktivitas senyawa antimikrobia fenol meliputi reaksi dengan membran sel yang menyebabkan meningkatnya permeabilitas membran sel dan mengakibatkan hilangnya isi sel, inaktivasi enzim-enzim esensial atau inaktivasi fungsional materi genetic (Oramahi *et al.*, 2011)

Berdasarkan latar belakang yang telah diuraikan, perlunya penelitian mengenai identifikasi fungi *Aspergillus spp.* pengkontaminasi aflatoksin pada bahan pangan biji-bijian khususnya tanaman jagung yang merupakan bahan pangan pokok baik sebagai konsumsi manusia maupun pakan hewan, dan pentingnya menguji efektifitas bahan pengendali fungisida yang terkandung pada Asap cair baik dari tempurung kelapa sehingga diharapkan mampu menekan fungi pengkontaminasi mikotoksin khususnya aflatoksin.

1.2. Identifikasi Masalah

Berdasarkan pemaparan tersebut di atas, maka masalah-masalah dalam penelitian ini dapat diidentifikasikan sebagai berikut:

1) Apakah berbagai fungi *Aspergillus spp.* yang menginfeksi buah (tongkol) jagung dapat diidentifikasi?

- 2) Bagaimanakah efikasi asap cair tempurung kelapa terhadap patogenitas pada fungi *Aspergillus spp.* pada buah (tongkol) jagung ?
- 3) Apakah ada konsentrasi asap cair tempurung kelapa yang memiliki efikasi paling tinggi terhadap patogenitas pada fungi *Aspergillus spp.* pada buah (tongkol) jagung

1.3. Maksud dan Tujuan Penelitian

Maksud penelitian ini adalah untuk mengidentifikasi fungi *Aspergillus spp*. pengkontaminasi buah jagung, serta menguji efektifitas asap cair tempurung kelapa dan arang sekam dalam menekan pertumbuhan fungi *Aspergillus spp*. Adapun tujuan dari penelitian ini adalah untuk:

- 1) Mengidentifikasi fungi *Aspergillus spp.* yang ada pada jagung yang mampu menyebabkan aflatoksin.
- Mengetahui efektifitas penggunaan Asap cair tempurung kelapa pada fungi Aspergillus spp.

1.4. Manfaat penelitian

Manfaat penelitian:

1) Aspek teoritis;

Hasil penelitian ini dapat digunakan untuk menambah referensi dalam bidang karya ilmiah; serta merupakan pembelajaran dalam menerapkan teori sehingga menambah pengetahuan, pengalaman dan dokumentasi ilmiah.

2) Aspek praktis;

Sebagai bahan masukan kepada masyarakat dalam memanfaatkan fungisida dalam pengendalian dan menekan pertumbuhan fungi pengkontaminasi aflatoksin pada bahan pangan biji-bijian dengan menggunakan asap cair.