BAB 3 PROSEDUR PENELITIAN

3.1 Metode Penelitian

Metode penelitian yang digunakan dalam penelitian ini yaitu menggunakan metode kuantitatif dengan pendekatan komparatif-korelasional. Penelitian kuantitatif mengacu pada pendekatan yang berpusat pada data numerik dan penerapan teknik statistik untuk mengevaluasi hipotesis yang diajukan Adil et al. (2023). Salah satu bentuk pendekatan dalam penelitian kuantitatif adalah pendekatan komparatif, yaitu pendekatan yang dirancang untuk melakukan perbandingan antar dua kelompok atau lebih berdasarkan variabel tertentu (Masrukhin, 2019). Selain pendekatan komparatif, pendekatan korelasional juga menjadi bagian penting dalam penelitian kuantitatif. Menurut Sari et al. (2023) dan Hasbi, Damayanti, Hermina, & Mizani (2023) metode penelitian dengan korelasional merupakan-suatu metode.penelitian yang dimaksudkan untuk mengidentifikasi dan menilai tingkat hubungan antara dua variabel atau lebih tanpa melakukan intervensi atau mengubah variabel-variabel tersebut. Para peneliti memilih metode korelasional untuk menyelidiki hubungan antara disposisi matematis peserta didik dan kemampuan mereka dalam memecahkan masalah matematika, tanpa menerapkan intervensi khusus pada partisipan. Oleh karena itu, penelitian ini termasuk dalam kategori penelitian non-eksperimental.

3.2 Variabel Penelitian

Salah Salah satu elemen penting dalam proyek penelitian yang memerlukan proses investigasi yang ekstensif adalah variabel penelitian. Sebagaimana dicatat oleh Sugiyono (2015) variabel penelitian mencakup semua faktor yang diidentifikasi oleh peneliti untuk diperiksa dan dianalisis, sehingga memungkinkan untuk pengumpulan data yang berfungsi sebagai dasar untuk membuat kesimpulan. Dalam penelitian ini, variabel yang diteliti dikategorikan ke dalam dua kelompok: variabel independen dan variabel dependen.

3.2.1 Variabel Bebas

Variabel bebas diartikan sebagai elemen yang diyakini memberi pengaruh atau menjadi determinan terhadap pergeseran nilai pada variabel yang dipengaruhi. Dalam konteks penelitian ini, variabel bebas yang dimaksud adalah jenis kelamin (X).

3.2.2 Variabel Terikat

Variabel terikat atau dependen merupakan aspek yang mengalami perubahan sebagai respons terhadap pengaruh yang diberikan oleh variabel independen. Pada penelitianini, aspek yang diamati sebagai variabel dependen mencakup disposisi terhadap matematika (Y_1) dan kemampuan pemecahan masalah matematika (Y_2) .

3.3 Populasi dan Sampel

(1) Populasi

Penelitian ini mengumpulkan data dari populasi yang menjadi fokus penelitian. Menurut Sugiyono (dalam Adil et al., 2023), populasi merujuk pada sekelompok besar atau individu yang memiliki kesamaan ciri-ciri spesifik yang diidentifikasi oleh peneliti, yang diperiksa dan dievaluasi untuk menarik kesimpulan. Untuk penelitian ini, setiap siswa kelas tujuh di SMP Negeri 5 Tasikmalaya dipilih sebagai populasi untuk mengumpulkan data.

Tabel 3. 1 Daftar Jumlah Peserta-Didik Kelas VII SMP Negeri 5 Tasikmalaya

Kelas	Jumlah Peserta Didik
VII A	35
VII B	35
VII C	35
VII D	35
VII E	35
VII F	36
VII G	35
VII H	36
VII I	36
VII J	36

Kelas	Jumlah Peserta Didik
VII K	32
Jumlah	386

Sumber: Administrasi Tata Usaha SMP Negeri 5 Tasikmalaya

(2) Sampel

Sampel merujuk pada representasi sebagian kecil dari keseluruhan anggota populasi yang memiliki atribut atau ciri-ciri tertentu, sebagaimana dikemukakan oleh (Adil et al., 2023). Untuk penelitian ini, metode pengambilan sampel acak langsung digunakan untuk memilih sampel. Metode ini, seperti yang dijelaskan oleh Sugiyono, melibatkan pemilihan unit sampel secara acak tanpa memperhatikan hierarki dalam populasi. Perhitungan jumlah sampel untuk penelitian ini sesuai dengan pedoman yang ditetapkan oleh Yount (dalam Ramadhayanti, 2019). Di bawah ini adalah tabel yang menguraikan penentuan ukuran sampel berdasarkan kriteria Yount.

Tabel 3. 2 Penentuan Jumlah Sampel Menurut Yount

Besar <u>Populasi</u>	Besar Sampel
0 – 100	100%
101 – 1.000	10%
1.001 - 5.000	5%
5.001 – 10.000	3%
>10.000	1%

Yount (dalam Ramadhayanti, 2019)

Berdasarkan data administrasi, diketahui populasi atau jumlah seluruh peserta didik sebanyak 386. Jumlah pengambilan sampel berdasarkan Yount sebagai berikut:

$$386 \times \frac{10}{100}$$

$$= 386 \times \frac{1}{10}$$

$$= 193 \times \frac{1}{5}$$

$$= \frac{193}{5}$$

$$= 38.6 \approx 39$$

Maka sampel dalam penelitian ini sebanyak 39 peserta didik.

3.4 Teknik Pengumpulan Data

(1) Penyebaran Angket Disposisi Matematis

Angket (kuisioner) digunakan sebagai instrumen memperoleh data melalui penyampaian sejumlah item pertanyaan atau pernyataan dalam bentuk tertulis, yang direspons oleh subjek penelitian secara mandiri, baik secara tatap muka maupun melalui jalur tidak langsung Roosinda et al. (2021). Responden akan mengisi kuesioner sendiri, membaca setiap pertanyaan, menafsirkan maksudnya, dan menuliskan jawabannya.

Pada penelitian ini, instrumen yang digunakan untuk mengukur disposisi matematis berupa kuesioner yang memuat 24 item pernyataan. Pengumpulan data melalui kuesioner dilakukan sebelum peserta didik menyelesaikan tes yang dirancang untuk menilai keterampilan dalam menyelesaikan masalah matematika. Teknik penskoran yang diterapkan dalam analisis data angket ini menggunakan model Skala Likert, yakni suatu pendekatan kuantitatif yang berfungsi untuk mengukur persepsi, sikap, atau opini individu maupun kelompok terhadap suatu kondisi atau fenomena tertentu.

(2) Pengerjaan Soal Tes Kemampuan Pemecahan Masalah Matematika

Penilaian terhadap kemampuan pemecahan masalah dilakukan melalui soal uraian tertulis. Melalui instrumen ini, peneliti menghimpun data yang merefleksikan performa peserta didik dalam menghadapi dan menyelesaikan permasalahan matematika dengan tahapan menurut Bransford & Stein (1993). Jawaban peserta didik akan dianalisis untuk memahami kemampuan mereka dalam memecahkan masalah yang ditinjau berdasarkan jenis kelamin, sesuai dengan setiap tahapan pemecahan masalah IDEAL.

3.5 Instrumen Penelitian

3.5.1 Angket Disposisi Matematis

Peneliti menyusun angket disposisi yang dirancang untuk menilai tingkat disposisi-matematis peserta didik berdasarkan indikator yang dijelaskan oleh NCTM (dalam Utami et al., 2021). Angket yang akan digunakan terdiri atas 30 butir pernyataan dengan kisi-kisi sebagai berikut:

Tabel 3. 3 Kisi-Kisi Anget Disposisi Matematis

No	Indikator Disposisi Matematis	Nome	Nomor Item	
NO	indikator Disposisi Waternatis		(-)	Pernyataan
1	Percaya diri dalam menggunakan matematika	1,3	2,4	4
2	Fleksibel dalam mengerjakan pekerjaan matematis	5,7,9	6,8	5
3	Tekun dalam menyelesaikan tugas matematika	10,11,12	13,14	5
4	Rasa ingin tahu terhadap matematika	15,17	16,18	4
5	Refleksi terhadap cara berpikir	19,20,21	22	4
6	Menghargai penerapan matematika	23	24,25,26	4
7	Menghargai peran matematika.	27,28,29	30	4
	Jumlah	1	1	30

Modifikasi dari : Mahmuzah & Aklimawati (2022)

3.2.3 Soal Kemampuan Pemecahan Masalah Matematika

Penelitian ini memanfaatkan sebuah instrumen asesmen berupa soal esai tertulis, yang disusun merujuk pada tahapan penyelesaian masalah sebagaimana dikembangkan oleh Bransford & Stein (1993). Instrumen tersebut terdiri atas satu butir soal yang difokuskan pada topik statistika, dan dirancang untuk mengkaji kapasitas peserta didik dalam memahami, merumuskan, serta menyelesaikan persoalan matematis secara terstruktur. Tujuan penggunaan alat ukur ini adalah untuk memperoleh gambaran menyeluruh mengenai keterampilan pemecahan masalah matematis. Rancangan indikator soal tersebut disajikan pada kisi-kisi berikut.

Tabel 3. 4 Kisi-kisi Tes Kemampuan Pemecahan Masalah Matematis

Capaian Pembelajaran	Tahap- tahappemecahan masalah IDEAL	Indikator Pemecahan Masalah yang diukur	Bentuk Soal	Nomor Soal
Pembelajaran Peserta didik mampu mengidentifikasi serta menginterpretasikan nilai rata-rata (mean), nilai tengah	* *	Masalah yang diukur Mengidentifikasi informasi yang relevan, menuliskan data hal-hal yang teridentifikasi dari persoalan soal Menuliskan data yang menjadi fokus pemecahan masalah dari soal Mencari kemungkinan strategi untuk mendapatkan solusi dari permasalahan soal Mengantisipasi hasil dan melakukan penyelesaian sesuai strategi yang telah ditetapkan		
		mendalami dan mengembangkan		

Capaian Pembelajaran	Tahap- tahappemecahan masalah IDEAL	Indikator Pemecahan Masalah yang diukur	Bentuk Soal	Nomor Soal
		jawaban untuk konteks yang berbeda		

(Bransford & Stein, 1993)

3.6 Uji Coba Instrumen

Sebelum angket disposisi matematis diberikan kepada sampel penelitian, instrumen dilakukan mengajuan awal kepada peserta didik yang bukan sampel sebanyak 30 orang. Uji-coba isntrumen dilakukan pada tanggal 9 April 2025 selama 3 JP yang diawali dengan pemberian arahan mengenai tata cara pengisisan angket yang kemudian diberikan lembaran angket sebagai tes. Selanjutnya uji coba soal dirancang untuk menilai kemampuan-pemecahan masalah matematika instrumen diuji cobakan kepada peserta didik diluar sampel sebanyak 30 orang diawali dengan pemberian arahan pengisian soal tes yang kemudian diberikan soal kemampuan-pemecahan masalah.

Uji coba intrumen mencakup dari uji validasi dan reliabilitas pada angket disposisi matematis serta soal tes kemampuan-pemecahan masalahmatematika.

(1) Uji Coba Instrumen

Validitas suatu instrumen mengacu pada sejauh mana alat ukur tersebut mampu merepresentasikan secara tepat konsep atau variabel yang ingin diteliti. Validitas menunjukkan tingkat ketepatan instrumen dalam mengukur aspek yang memang menjadi fokus pengukuran (Adil et al., 2023). Untuk menilai validitas instrumen dalam penelitian ini, digunakan koefisien korelasi *Pearson Product Moment* sebagaimana dirumuskan oleh Karl Pearson, yang ditampilkan sebagai berikut:

$$r_{xy-} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{\{N \sum x^2 - (\sum x)^2\}\{N \sum y^2 - (\sum y)^2\}}}$$

Keterangan:

 r_{xy} = Koefisienkorelasi yang dicari

N = Banyaknya responden

x =Skor butir soal

y = Skor total

Setelah nilai koefisien korelasi Pearson Product Moment dihitung, interpretasi tingkat keterkaitan r_{xy} dalam uji validitas butir dilakukan dengan mengacu pada klasifikasi menurut Sugiyono (Abhi Purwoko et al., 2021).

Langkah berikutnya adalah menentukan soal tersebut valid atau tidak menggunakan rumus:

$$t = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}$$

Keterangan:

 $t = nilai r_{hitung}$

 r_{xy} = koefisien korelasi r_{xy}

n= jumlahresponden

Jika nilai $t_{hitung} > t_{tabel}$ maka korelasi dikatakan bermakna (valid), sebaliknya jika nilai $t_{hitung} > t_{tabel}$ maka dikatakan todak valid.

Tabel 3. 5 Interpretasi Koefisien Korelasi

Interval Koefisien	Tingkat Korelasi
0,00 - 0,199	Sangat Rendah
0,20 - 0,399	Rendah
0,40 - 0,599	Cukup Kuat
0,60 - 0,799	Kuat
0,80 - 1,000	Sangat Kuat

a) Validasi Angket Disposisi Matematis

Berdasarkan perhitungan didapatkan nilai t_{tabel} dengan a=5% dan derajat:kebebasan (dk)=n-2, (dk)=30-2=28, maka $r_{tabel}=2,048$. Adapun hasil analitik dari pengujian validitas pernyataan angket disposisi matematis peserta didik adalah sebagai berikut:

Tabel 3. 6 Validitas Angket Disposisi Matematis Peserta Didik

No	r_{xy}	Kategori	r_{hitung}	r_{tabel}	Keterangan	Kesimpulan	
1	0,397	Rendah	2,289	2,048	Valid	Digunakan	
2	0,417	Cukup Kuat	2,428	2,048	Valid	Digunakan	
3	0,385	Rendah	2,207	2,048	Valid	Digunakan	
4	0,101	Sangat Rendah	0,537	2,048	Tidak Valid	Tidak Digunakan	
5	0,554	Cukup Kuat	3,521	2,048	Valid	Digunakan	
6	-0,107	False	-0,569	2,048	Tidak Valid	Tidak Digunakan	
7	0,478	Cukup Kuat	2,880	2,048	Valid	Digunakan	
8	0,440	Cukup Kuat	2,593	2,048	Valid	Digunakan	
9	0,401	Cukup Kuat	2,316	2,048	Valid	Digunakan	
10	0,462	Cukup Kuat	2,756	2,048	Valid	Digunakan	
11	0,538	Cukup Kuat	3,377	2,048	Valid	Digunakan	
12	0,413	Cukup Kuat	2,400	2,048	Valid	Digunakan	
13	0,489	Cukup Kuat	2,966	2,048	Valid	Digunakan	
14	0,447	Cukup Kuat	2,644	2,048	Valid	Digunakan	
15	0,221	Rendah	1,199	2,048	Tidak Valid	Tidak Digunakan	
16	0,169	Sangat Rendah	0,907	2,048	Tidak Valid	Tidak Digunakan	
17	0,570	Cukup Kuat	3,671	2,048	Valid	Digunakan	
18	0,413	Cukup Kuat	2,400	2,048	Valid	Digunakan	
19	0,647	Kuat	4,490	2,048	Valid	Digunakan	
20	0,673	Kuat	4,815	2,048	Valid	Digunakan	
21	0,561	Cukup Kuat	3,586	2,048	Valid	Digunakan	
22	0,358	Rendah	2,029	2,048	Tidak Valid	Tidak Digunakan	
23	0,627	Kuat	4,259	2,048	Valid	Digunakan	
24	0,442	Cukup Kuat	2,607	2,048	Valid	Digunakan	
25	0,450	Cukup Kuat	2,666	2,048	Valid	Digunakan	
26	0,434	Cukup Kuat	2,549	2,048	Valid	Digunakan	
27	0,766	Kuat	6,305	2,048	Valid	Digunakan	
28	0,614	Kuat	4,116	2,048	Valid	Digunakan	
29	0,076	Sangat Rendah	0,403	2,048	Tidak Valid	Tidak Digunakan	
30	0,404	Cukup Kuat	2,337	2,048	Valid	Digunakan	

Hasil uji angket menunjukkan bahwa 24 pernyataan valid dan layak digunakan sebagai alat ukur dalam penelitian ini, sementara 6 butir lainnya tidak memenuhi kriteria validitas sehingga tidak disertakan dalam instrumen. Perhitungan uji validitas disajikan lebih lengkap pada lampiran 2.

Tabel 3. 7 Kisi-Kisi Angket Disposisi Matematis yang Digunakan

No	Indikator Disposisi Matematis	Nomo	Jumlah	
1,0	Titulkator Disposisi Matematis		(-)	0
1	Percaya diri dalam menggunakan matematika	1,3	2,	3
2	Fleksibel dalam mengerjakan pekerjaan matematis	4,5,7	6	4
3	Tekun dalam menyelesaikan tugas matematika	8,9,10	11,12	5
4	Rasa ingin tahu terhadap matematika	13	14	2
5	Refleksi terhadap cara berpikir	15,16,17	-	3
6	Menghargai penerapan matematika	18	19,20,21	4
7	7 Menghargai peran matematika. 22,23 24			
	Jumlah			24

b) Validasi Soal Tes Kemampuan Pemecahan Masalah

Validasi instrument diukur dengan menerapkan koefisien korelaasi *Product Moment Pearson* menggunakan data asli sebagai berikut:

$$r_{xy} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{\{N \sum x^2 - (\sum x)^2\}\{N \sum y^2 - (\sum y)^2\}}}$$

Keterangan:

 r_{xy} = Koefisien korelasi yang dicari

N = Banyaknya responden

x = Skor butir soal

y = Skor total

Nilai t_{tabel} dengan a=5% dengan derajat kebebasan (dk)=n-2, (dk)=30-2=28, mata $r_{tabel}=2,048$. Adapun hasil perhitungan uji validitas pemecahaan masalah sebagai berikut:

Tabel 3. 8 Validitas Soal Tes Kemampuan Pemecahan Masalah

r_{xy}	Kategori	t_{hitung}	t_{tabel}	keterangan	Kesimpulan
0,999919	Sangat Kuat	415,7145	2,048	Valid	Digunakan

Tabel 3. 9 Validasi Soal Tes Kemampuan Pemecahan Masalah Setiap Indikator

	r_{xy}	Kategori	t_{hitung}	t_{tabel}	Keterangan	Kesimpulan
a	0,780	Kuat	6,596	2,048	Valid	Digunakan
b	0,759	Kuat	6,176	2,048	Valid	Digunakan
С	0,618	Kuat	4,159	2,048	Valid	Digunakan
d	0,739	Kuat	5,797	2,048	Valid	Digunakan
e	0,699	Kuat	5,176	2,048	Valid	Digunakan

Merujuk pada temuan dari tahap uji coba instrumen, butir-butir soal tes kemampuan pemecahan masalah matematika terbukti memiliki validitas yang memadai sehingga dapat diimplementasikan dalam kegiatan penelitian. Informasi rinci terkait hasil analisis disediakan pada Lampiran 2 dalam bagian uji validitas.

(2) Uji Reliabilitas Instrumen

Menurut Morissan (dalam Adil et al., 2023) reliabilitas merupakan indikator tingkat keandalan atau kepercayaan terhadap hasil suatu pengukuran. Suatu instrumen dikatakan memiliki reliabilitas apabila hasil pengukurannya konsisten dan dapat dipercaya.

Dalam penelitian ini, pengukuran reliabilitas instrumen dilakukan menggunakan rumus Alpha yang dikembangkan oleh Cronbach (dalam Abhi Purwoko et al., 2021) sebagai berikut:

$$r_{11} = \left(\frac{k}{k-1}\right) \left(1 - \frac{\sum \sigma_i^2}{\sigma_i^2}\right)$$

Dengan ketentuan:

$$\sigma_i^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$
 atau $\sigma_i^2 = \frac{\sum X^2 - (\sum X)^2}{N(N-1)}$

Keterangan:

 r_{11} = koefisien reliabilitas

k = banyalnya jumlah soall

 $\sum \sigma_i^2$ = Total varians butir

N = jumlah responden

X = skor tiap butir soal

Setelah nilai r_{11} diperoleh, langkah berikutnya adalah menentukan nilai r_{tabel} untuk 40 ingkat signifikansi $\alpha=0.05$ dengan df=n-2. Keputusan yang diambil berdasarkan aturan berikut:

Jika $r_{11} > r_{tabel}$, maka 40
ingkat40nt tersebut dianggap reliabel.

Jika $r_{11} < r_{tabel}$, maka instrumen tersebut dianggap reliabel.

Untuk mengukur tingkat reliabilitas, dapat digunakan kriteria Guilford Empirical Rules.

Tabel 3. 10 Kriteria Reliabilitas Instrumen

Koefisien Korelasi	Interpretasi Reliabilitas
0,00 - 0,199	Derajat reliabilitas sangat rendah (diabaikan)
0,20 - 0,399	Derajat reliabilitas rendah
0,40 - 0,599	Derajat reliabilitas sedang
0,60 - 0,799	Derajat reliabilitas kuat
0,80 - 1,000	Derajat reliabilitas sangat kuat

Sumber: Abhi Purwoko et al. (2021)

Dari hasil pperhitungan diperolehbnilai $r_{11} = 0.846305 > r_{tabel} = 0.374$. maka pernyataan dalam angket disposisi matematis yang digunakan dinyatakan reliabel dan layak digunakan. Sedangkan untuk soal tes kemampuan pemecahan masalah diperoleh $r_{11} = 0.63061 > r_{tabel} = 0.374$. maka soal tersebut dinyatakan reliabel dan layak digunakan. Adapun ringkasan perhitungan berikut:

Tabel 3. 11 Reliabilitas Instrumen Penelitian

Instrumen	Koefisien Reliabilitas	Kriteria	r_{tabel}	Keterangan
Angket Disposisi Matematis	0,846305	Sangat Kuat	0,374	Reliabel
Tes Kemampuan Pemecahan Masalah Matematika	0,63061	Kuat	0,374	Reliabel

3.7 Teknik Analisis Data

3.7.1 Teknik Pengolahan Data

(1) Analisis Angket Disposisi Matematis

Angket yang dimanfaatkan dalam penelitian ini memuat 24 item pernyataan, yang diklasifikasikan ke dalam 15 butir bernuansa positif dan 9 butir bernuansa negatif, dengan empat alternatif jawaban yang tersedia. Bobot penilaian pada angket dapat ditinjau pada tabel berikut:

Tabel 3. 12 Penskoran Angket Disposisi Matematis

No	Pernyataan	Bobot Pernyataan			
		Positif	Negatif		
1	Selalu (SL)	4	1		
2	Sering (S)	3	2		
3	Pernah (P)	2	3		
4	Tidak Pernah (TP)	1	4		

(Aliah, Sukmawati, Hidayat, & Rohaeti, 2020)

Menurut Santoso (2019) agar statistik parametrik dapat diterapkan, data harus diubah menjadi skala interval. Metode *Successive Interval* merupakan teknik yang digunakan untuk mengonversi data ordinal menjadi data interval (Abhi Purwoko et al., 2021). Dengan demikian, data ordinal yang diperoleh melalui pengukuran harus diubah menjadi data interval dengan bantuan *Method Successive Interval* (MSI) *Method Successive Interval* (MSI). Transformasi ini dapat dilakukan dengan memanfaatkan perangkat tambahan pada Microsoft Excel, yaitu Program *Successive Interval*.

Tabel 3. 13 Kategori Skor Disposisi Matematis

Skor	Kategori
$X \ge M + SD$	Tinggi
$M - SD \le X < M + SD$	Sedang
X < M - SD	Rendah

(Azwar dalam Putri, Priyadi, & Khoirunnisa, 2023)

Keteragan:

x : Skor Responden

M: Mean

SD: Standar Deviasi

(2) Analisis Tes Kemampuan Pemecahan Masalah

Tabel 3. 14 Penskoran Kemampuan Pemeahan Masalah

Tahapan IDEAL	Respon terhadap soal/masalah	Skor
Identify problem	Berupaya menafsirkan komponen yang diketahui,	1
	namun pemahamannya masih menyimpang	
	Mampu mengenali informasi yang tersedia sebagai	2
	dasar menuju solusi, namun penyajiannya belum	
	sepenuhnya tuntas	
	Identifikasi unsur yang diketahui dilakukan secara	3
	lengkap dan benar	
Define goal	Menuliskan data yang ditanyakan dari permasalahan	1
	soal	
	Menuliskan data yang ditanyakan dari permasalahan	2
	soal dengan benar	
Explore possible	Rancangan strategi yang digunakan tidak selaras,	1
strategies	sehingga mengarahkan pada hasil yang salah	
	Strategi yang rancang relevan namun eksekusinya	2
	mengarah pada hasil yang tidak benar	
	Strategi yang dibuat sudah tepat	3
Anticipate outcome	Terdapat usaha menyelesaikan soal, namun belum	1
and act	menghasilkan solusi yang benar	
	Langkah penyelesaian telah dilakukan, tetapi terdapat	2
	kekeliruan dalam operasi hitung	
	roses penyelesaian dilakukan dengan benar dan	3
	mencapai solusi yang benar	
Look back and learn	Kesimpulan yang diberikan salah dan tidak ada upaya	1
	penyelesaian cara lain	

Tahapan IDEAL	Respon terhadap soal/masalah			
	Kesimpulan yang diberikan salah tapi ada upaya	2		
	penyelesaian cara lain			
	Kemsimpulan yang diberikan benar namun tidak ada			
	pembuktian cara lain			
	Kemsimpulan yang diberikan benar dan ada	4		
	pembuktian cara lain			
Skor Maksimal		15		

Analisis terhadap kemampuan peserta didik dalam mengerjakan soal matematika dilakukan melalui penelaahan terhadap hasil pengukuran berbasis skor dari tes yang telah diberikan. Data yang dianalisis meliputi akumulasi skor keseluruhan serta prosedur penyelesaian yang diimplementasikan oleh pesertadidik dalam menjawab atas pertanyaan pemecahan masalah secara efektif juga tepat. Data hasil tersebut selanjutnya dipetakan melalui proses konversi skor ke dalam bentuk persentase, baik dalam cakupan total perolehan maupun pada setiap komponen tahapan pemecahan masalah matematis. Adapun rumus yang digunakan untuk proses konversi dijabarkan sebagai berikut.

$$P_i = \frac{f_i}{n} \times 100\%$$

Keterangan:

 P_i = Nilai Presentase

 f_i = Frekuensi yang mengjawab benar/skore total yang diperoleh

n = Jumlah Sampel

Hasil persentase kemampuan peserta didik dalam pemecahan masalah matematis selanjutnya diklasifikasikan berdasarkan kategori dalam tabel. Mengacu pada pendapat Syah (Parnawi, 2019) kriteria pengkategorian kemampuan pemecahan masalah matematis sajikann pada tabel berikut:

Tabel 3. 15 Presentase Kategori Kemampuan Pemecahan Masalah

Presentase	Kategori		
$80\% < PM \le 100\%$	Sangat Tinggi		

Presentase	Kategori
$60\% < PM \le 80\%$	Tinggi
$40\% < PM \le 60\%$	Sedang
$20\% < PM \le 40\%$	Rendah
<i>PM</i> ≤ 20%	Sangat Rendah

3.7.2 Teknik Analisis Data untuk Hipotesis

3.7.2.1. Statistika Deskriptif

Statistik dsekriptif adalah pendekatan dalam ilmu statisik yang brefungsi untuk mengolah dan menyajikan data yang sudah terkumpul dengan cara menggambarkan kondisi nyata dari data tersebut, tanpa bermaksud untuk menggeneralisasi atau menyimpulkan ke populasi yang lebih luas. Selain itu, statistik deskriptif juga dapat digunakan untuk mengevaluasi kekuatan hubungan antar variabel melalui teknik korelasi, memprediksi variabel dependen menggunakan analisis regresi, serta melakukan perbandingan dengan menganalisis nilai rata-rata baik dari sampel maupun keseluruhan populasi (Sugiyono, 2015).

3.7.2.2. Uji Prasyarat Analisis

(1) Uji normalitas data

Uji normalitas bertujuan dalah untuk menentukan apakah data yang dikumpulkan dari temuan penelitian mengikuti distribusi normal. Salah satu pendekatan untuk memeriksa normalitas adalah dengan menggunakan rumus *chi-kuadrat*, yang dinyatakan sebagai berikut:

$$x^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Keterangan:

 x^2 = Nilai uji statistik uji chi – kuadrat

 O_i = frekueinsi yang diamati

 E_i = frekuensi yang diharapkann

Pasangan hipotesis:

 H_0 = Penyatakan bahwa sampel dariipopulasi dengan distribusi normal

 H_1 = menyatakan bahwa sampel berasal dari populasi distribusi tidak normal

Nilai O_i dan E_i diperoleh berdasarkan data olahan dan disajikan dalam bentuk tabel distribusi frekuensi.

Pengambilan keputusan uji didasarkan pada kriteria di mana H_0 ditolak apabila nilai $x_{hitung}^2 \ge x_{(1-\alpha)(k-1)}^2$ dengan derajat kebebasan dk = k-1, di mana k merupakan jumlah kelas frekuensi. Penolakan H_0 berarti sampel tidak berasal dari populasi yang berdistribusi normal. Sebaliknya, jika H_0 tidak ditolak, maka sampel dianggap berasal dari populasi normal, dan analisis dapat dilanjutkan.

(2) Menguji linearitas

a. Menguji Signifikasi

Pasangan Hipotesis:

 H_0 = hubungan variabel X dan Y tidak signifikan

 H_1 = hubungan variabel X dan Y signifikan

Menghitung jumlah kuadrat regresi $(JK_{Reg(a)})$, dengan rumus:

$$JK_{Reg(a)} = \frac{\left(\sum X\right)^2}{n}$$

Menghitung jumlah kuadrat regresi $\frac{b}{a}$ $(JK_{Reg(\frac{b}{a})})$, dengan rumus:

$$JK_{Reg(\frac{b}{a})} = b\left\{\sum XY - \frac{(\sum X)(\sum Y)}{n}\right\}$$

Menghitung jumlah kuadrat residu (JK_{Res}), dengan rumus:

$$JK_{Res} = \sum X^{2} - \left(JK_{Reg\left(\frac{b}{a}\right)}\right) - \left(JK_{Reg(a)}\right)$$

Menghitung rata-rata jumlah kuadrat regresi $(R JK_{Reg(a)})$, dengan rumus:

$$(R J K_{Reg(a)}) = J K_{Reg(a)}$$

Menghitung rata-rata jumlah kuadrat residu $\frac{b}{a} (RJK_{Res(\frac{b}{a})})$ dengan rumus:

$$\left(RJK_{Res\left(\frac{b}{a}\right)}\right) = JK_{Reg\left(\frac{b}{a}\right)}$$

Menghitung rata-rata jumlah kuadrat residu (RJK_{Res}), dengan rumus:

$$RJK_{Res} = \frac{JK_{Res}}{n-2}$$

Menghitung nilai F_{hitung} , dengana rumuss:

$$F = \frac{RJK_{Res(\frac{b}{a})}}{RJK_{Res}} = \frac{S_{Reg}^2}{S_{Res}^2}$$

Mencari nilai F_{tabel} pada taraf signifikansi 95% atau a=5% menggunakan rumus:

$$F_{tabel} = F_{(1-a)\left(db_{Res}\left(\frac{b}{a}\right)\right)}(db_{Res})$$
dimana $db_{Reg} = 1$ dan $db_{Res} = n-2$

Kriteria pengujiannya adalah tolak H_0 jika $F_{hitung} \ge F_{tabel}$, artinya signifikan. Dalam hal lainnya H_0 diterima.

b. Menguji Linieritas

Menurut Hanief dan Hismawanto (2017), uji pengujian linearitas bertujuan untuk memverifikasi bahwa setiap variabel independen menunjukkan keterkaitan linear dengan variabel dependen. Jika hasil pengujian mengindikasikan adanya hubungan yang non-linear, maka alternatif analisis yang dapat ditempuh meliputi penggunaan regresi non-linear sederhana ataupun korelasi *Spearman*.

Rumus korelasi Spearman (Spearman's Rank Correlation)

$$(\rho) = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Keterangan:

 (ρ) = koefisien korelasi

 d_i = Selisih antara ranking y_1 dan y_2 $(r_{y_1} - r_{y_2})$

 d_i^2 = Kuadrat selisih antara $rank y_1$ dan y_2

Tabel 3. 16 Ringkasan Analisis Varians

Sumber Variasi	dk	JK	КТ	F
Total	N	$JKT = \sum X^2$	_	
Koefisien (a)	1	$JK_{(a)}$	$RJK_{(a)}$	S_{Reg}^2
Koefisien $(\frac{b}{a})$	1	$JK_{(\frac{b}{a})}$	$RJK_{(\frac{b}{a})} = S_{Reg}^2$	$\frac{S_{Reg}^2}{S_{Res}^2}$

Sumber Variasi	dk	JK	KT	F
Sisa	n-2	JK_{Res}	$RJK_{Res} = S_{res}^2$	
Tuna Cocok	<i>k</i> − 2	JK_{TC}	$RJK_{TC} = S_{TC}^2$	S_{TC}^2
Galat	n-k	JK_E	$JK_ERJK_E = S_E^2$	$\overline{S_E^2}$

Pasangan Hipotesis:

 H_0 = data berpola tidak linier

 H_1 = data berpola linier

Dasar pengambilan keputusannya yaitu tolak H_0 jika $F_{hitung} \ge F_{tabel}$, artinya linier. Dalam hal lainnya H_0 diterima.

3.7.2.3. Uji Hipotesis

Setelah seluruh persyaratan awal untuk pengujian terpenuhi, tahap berikutnya adalah pelaksanaan pengujian hipotesis. Pada penelitian ini, prosedur pengujian hipotesis mencakup beberapa langkah:

1) Menganalisis perbedaan disposisi matematis (Y_1) antara peserta didik laki-laki (X_1) dan perempuan (X_2) menggunakan rumus *Independent Sample t Test*.

Metode ini merupakan salah satu pendekatan dalam analisis statistik inferensial yang digunakan untuk menilai apakah terdapat perbedaan rerata antara dua kelompok data yang tidak saling bergantung satu sama lain (Palupi, Yulianna, & Winarsih, 2021). Ketidakbergantungan ini menunjukkan bahwa observasi pada masing-masing kelompok berasal dari unit analisis yang berbeda dan tidak memiliki keterkaitan langsung. Uji ini bertujuan untuk mengevaluasi signifikansi perbedaan nilai tengah (mean) dari dua kelompok yang dibandingkan.

Rumusan Hipotesis penelitian:

 H_0 ditolak: $t_{hitung} > t_{tabel}$: Terdapat perbedaan disposisi matematis antara kedua kelompok jenis kelamin signifikan secara statistik.

 H_0 diterima : $t_{hitung} < t_{tabel}$: Tidak terdapat perbedaan disposisi matematis_antara peserta didik aki-laki dan Perempuan yang signifikan

Maka:

Jika tingkat signifikansi melebihi 0.05, berarti tidak ada bukti yang cukup untuk menolak hipotesis nol (H_0) , dan dengan demikian, hipotesis alternatif (H_1) idak dapat dikonfirmasi. Skenario ini menunjukkan bahwa variabel independen tidak secara signifikan mempengaruhi variabel dependen.

Sebaliknya, ketika nilai signifikansi < 0.05, maka hipotesis $noll(H_0)$ dianggap tidak sesuai dengan data, dan hipotesis alternatif (H_1) dinyatakan diterima. Hal ini menunjukkan bahwa ada efek atau perbedaan yang mencolok antara variabel independenndan variabel dependen.

Rumus yang digunakan:

$$s_p^2 = \sqrt{\frac{(n_{X_1} - 1)s_{X_1}^2 + (n_{X_1} - 1)s_{X_2}^2}{n_{X_1} + n_{X_2} - 2}}$$

Kemudian, rumus t-test yang digunakan:

$$t = \frac{\bar{Y}_{1,X_1} - \bar{Y}_{1,X_2}}{\sqrt{s_p^2 \cdot \left(\frac{1}{n_{X_1}} + \frac{1}{n_{X_2}}\right)}}$$

Keterangan:

 \overline{Y}_{1,X_1} = rata-rata disposisi matematis peserta didik laki-laki

 \overline{Y}_{1,X_2} = rata-rata disposisi matematis peserta didik perempuan

 $s_{X_1}^2$ = varians disposisi matematis peserta didik laki-laki

 $s_{X_2}^2$ = varians disposisi matematis peserta didik perempuan

 n_{X_1} = jumlah peserta didik laki-laki

 n_{X_2} = jumlah peserta didik perempuan

Dengan derajat kebebasan (df):

$$df = n_{X_1} + n_{X_2} - 2$$

2) Menganalisis perbedaan kemampuan pemecahan masalah matematika (Y_2) antara peserta didik laki-laki (X_1) dan perempuan (X_2) masih menggunakan rumus independent sample t-test:

Rumusan hipotesis penelitian:

 H_0 ditolak : $t_{hitung} > t_{tabel}$: Terdapat perbedaan kemampuan pemecahan masalah matematika antara peserta didik laki-laki dan Perempuan yang signifikan

 H_0 diterima : $t_{hitung} < t_{tabel}$: Tidak terdapat perbedaan kemampuan pemecahan masalah matematika antara peserta didik laki-laki dan Perempuan

Sebelum menggunakan rumus t-test, gunakan rumus untuk menghitung *pooled* variance dalam *independent sample t-test*. Pooled variance digunakan untuk menggabungkan varians dari dua kelompok sampel yang diasumsikan memiliki varians populasi yang sama (homogenitas varians).

$$s_p^2 = \frac{(n_{X_1} - 1)s_{X_1}^2 + (n_{X_1} - 1)s_{X_2}^2}{n_{X_1} + n_{X_2} - 2}$$

Kemudian, rumus *t-test* yang digunakan:

$$t = \frac{\bar{Y}_{2,X_1} - \bar{Y}_{2,X_2}}{\sqrt{s_p^2 \cdot \left(\frac{1}{n_{X_1}} + \frac{1}{n_{X_2}}\right)}}$$

Keterangan:

 \overline{Y}_{2,X_1} = rata-rata kemampuan pemecahan masalah matematika peserta didik laki-laki \overline{Y}_{2,X_2} = rata-rata kemampuan pemecahan masalah matematika peserta didik perempuan $s_{X_1}^2$ = varians kemampuan pemecahan masalah matematika peserta didik laki-laki

 $s_{X_2}^2$ = varians kemampuan pemecahan masalah matematika peserta didik perempuan

 n_{X_1} = jumlah peserta didik laki-laki

 n_{X_2} = jumlah peserta didik perempuan

Dengan derajat kebebasan (df):

$$df = n_{X_1} + n_{X_2} - 2$$

3) Menghitung korelasi antara disposisi matemais (Y_1) dengan kemampuan pemecahan masalah matematika peserta didik (Y_2) menggunakan rumus Korelasi Product Momen Pearson jika pra syarat terpenuhi, dan uji korelasi spearman ketika prasyarat tidak terpenuhi.

Rumusan hipotesis statistik menurut

 H_0 : $\rho = 0$: Tidak terdapat korelasi antara variabel (Y_1) dan variabel (Y_2) .

 $H_1: \rho \neq 0$: Terdapat korelasi antara variabel (Y_1) dan variabel (Y_2) .

Uji hipotesis dilakukan untuk mengevaluasi adanya hubungan antara disposisi matematis dan kemampuan peserta didik dalam menyelesaikan soal-soal pemecahan masalah matematika. Rumusan hipotesis yang digunakan dalam penelitian ini adalah sebagai berikut:

 H_0 : $\rho = 0$: Tidak terdapat korelasi antara disposisi matematis dengan kemampuan pemecahan masalah matematika peserta didik di SMP Negeri 5 Tasikmalaya.

 H_1 : $\rho \neq 0$: Terdapat korelasi antara disposisi matematis dengan kemampuan pemecahan masalah matematika peserta didik di SMP Negeri 5 Tasikmalaya

Rumus korelasi Product Moment Pearson:

$$r_{xy} = \frac{N \sum y_1 y_2 - (\sum y_1)(\sum y_2)}{\sqrt{\{N \sum y_1^2 - (\sum y_1)^2\}\{N \sum y_2^2 - (\sum y_2)^2\}}}$$

Keterangan:

 r_{xy} = Koefisien korelasi yang dicari

N = Banyaknya subjek penelitian

 $y_1 =$ disposisi matematis

 y_2 = kemampuan pemecahan masalah

Langkah berikutnya adalah melakukan uji t menggunakan rumus:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Jika nilai $t_{hitung} > t_{tabel}$, maka H_0 diterima dan H_a ditolak. Hasil ini menunjukkan bahwa hanya ada sedikit atau bahkan tidak ada hubungan yang berarti antara sikap siswa terhadap matematika dan keterampilan mereka dalam memecahkan masalah matematika.

Rumus korelasi Spearman (Spearman's Rank Correlation)

$$(\rho) = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Keterangan:

 (ρ) = koefisien korelasi

 d_i = Selisih antara ranking y_1 dan y_2 $(r_{y_1} - r_{y_2})$

 d_i^2 = Selisih antara $rank y_1$ dan y_2

 y_1 = Nilai Disposisi Matematis

 y_2 = Nilai kemampuan pemecahan masalah

n = Jumlah data

6 = Nilai konstanta

Hasil perhitungan dengan rumus tersebut akan menunjukkan tingkat hubungan antara variabel Y_1 dan variabel Y_2 . Nilai r dapat berkisar antara -1 hingga +1, yang secara matematis dituliskan sebagai $-1 \le r \le \pm 1$.

Interpretasi hasil:

Apabila koefisien korelasi (r) berada mendekati angka nol atau tepat pada nol, hal ini menunjukkan bahwa tingkat keterkaitan antara variabel Y_1 dan Y_2 sangat lemah atau bahkan tidak terdapat hubungan linear di antara keduanya.

Jika nilai r mendekati ± 1 atau sama dengan ± 1 , korelasi antara kedua variabel kuat dan searah, dikatakan positif.

Jika nilai r mendekati -1 atau sama dengan -1, korelasi antara kedua variabel bersifat kuat namun berlawanan arah, yang mencerminkan adanya korelasi negatif. Selanjutnya r_{xy} diinterpretasikan menurut Schober & Schwarte (2018) yang tertera pada tabel:

Tabel 3. 17 Interpretasi Koefisien Korelasi

Besaran Koefisien Korelasi	Interpretasi
0.00 - 0.10	Dapat Diabaikan (Negligible)
0.10 - 0.39	Lemah
0,40 - 0,69	Sedang
0.70 - 0.89	Kuat
0,89 - 1,00	Sangat Kuat

3.8 Waktu dan Tempat Penelitian

3.8.1 Waktu Penelitian

Penelitian ini dilaksanakan pada September 2024 sampai Jun 2025. Untuk lebih jelasnya disajikan dalam tabel berikut.

Tabel 3. 18 Waktu Penelitian

No.	Kegiatan	2024				2025		
110.		Sept	Okt	Nov	Des	Apr	Mei	Jun
1	Pengajuan Judul Penelitian							
2	Penyusunan Proposal Penelitian							
3	Seminar Proposal Penelitian							
4	Penyusunan Instrumen Penelitian							
5	Menpengurus Surat Izin Penelitian							
6	Pelaksanaan Penelitian							
7	Pengelolahan Data dan Analisis Data							
8	Penyusunan Skripsi							
9	Sidang Skripsi Tahap 1							
10	Sidang Skripsi Tahap 2							

3.8.2 Tempat Penelitian

Penelitian ini dilaksanakan di kelas VII SMPN 5 Tasikmalaya yang beralamat di Jl. RE. Martadinata No. 85 Tasikmalaya, Cipedes, Kec Cipedes, Kota Tasimkalaya Provinsi Jawa Barat. Kurikulum yang digunakan di SMPN 5 Tasikmalaya yaitu Kurikulum Merdeka.