BAB 3 PROSEDUR PENELITIAN

3.1 Metode Penelitian

Jenis penelitian yang yang dipilih adalah penelitian kuantitatif dengan metode penelitian eksperimental. Dalam ranah pendidikan, penelitian eksperimental merupakan suatu aktivitas penelitian yang memiliki maksud untuk menelusuri dampak dari sebuah perlakuan pendidikan terhadap sikap siswa, atau untuk memverifikasi hipotesis mengenai terdapat atau tidaknya pengaruh suatu perlakuan jika dibandingkan dengan perlakuan lainnya. Perlakuan dalam penelitian eksperimen dikenal sebagai *treatment*, yaitu setiap tindakan atau variasi yang ingin diketahui pengaruhnya (Akbar *et al.*, 2023). Sampel dipilih secara acak dan dikelompokkan pada menjadi kelompok eksperimen dan kelompok kontrol.

3.2 Variabel Penelitian

Suatu penelitian mencakup variabel independen sebagai variabel bebas dan variabel dependen sebagai variabel terikat. Variabel penelitian ialah karateristik atau ciri yang dipunyai oleh seseorang atau objek yang bervariasi, dimana variasi tersebut diberlakukan oleh peneliti untuk dianalisis dan dijadikan acuan dalam menarik kesimpulan (Abubakar, 2023). Dalam studi ini, variabel independen yang digunakan ialah model *Problem Based Learning* berbantuan Genially, sementara variabel dependennya ialah kemampuan berpikir reflektif matematis siswa.

3.3 Populasi dan Sampel

3.3.1 Populasi

Populasi dalam studi yang dilaksanakan merujuk pada semua sumber data atau subjek yang menjadi objek penelitian, serta sumber-sumbet tempat dapat akan dikumpulkan (Abubakar, 2023). Tiga kelas VII SMPN 2 Rajapolah menjadi populasi dalam penelitian ini.

Tabel 3.1 Populasi Penelitian

Kelas	Jumlah Siswa
VII-A	23
VII-B	24
VII-C	27
Total Siswa	74

3.3.2 Sampel

Sampel pada penelitian yang dilaksanakan diperoleh dari populasi seluruh siswa kelas VII SMPN 2 Rajapolah, diambil sampel dua kelas dengan menggunakan cluster random sampling. Menurut Sugiyono (2013), cluster random sampling adalah proses pengambilan sampel yang dipilih ketika objek penelitian atau sumber data sangat besar. Metode ini melibatkan pemilihan sampel secara random dari kelas-kelas yang sudah ada sebagai populasi. Teknik ini digunakan mengingat sampel yang dipilih merupakan kelompok siswa yang ada sebelumnya tidak ada intervensi dari peneliti, yang berarti peneliti memilih kelas yang sudah ada di sekolah tempat penelitian. Proses pengambilan sampel secara acak dilakukan melalui undian sederhana. Dari tiga kelas, dua kelas dipilih secara random, di mana satu kelas berfungsi sebagai kelas kontrol dan satu lainnya sebagai kelas eksperimen. Hasil undian sederhana menunjukkan bahwa kelas VII-C ditetapkan sebagai kelas eksperimen dan VII-A sebagai kelas kontrol.

3.4 Desain Penelitian

Penelitian yang dilakukan ialah penelitian eksperimental yang melibatkan dua kelompok. Desain penelitian yang dipilih ialah *Nonequivalent Posttest-Only Control Group Design* (Lestari & Yudhanegara, 2015), dimana memungkinkan perbandingan antara dua kelompok berbeda. Kelompok pertama menerima *treatment* dengan model *Problem Based Learning* yang dibantu oleh Genially, sedangkan kelompok kedua menerima model *Problem Based Learning* tanpa bantuan Genially. Kedua kelompok dipilih secara acak. Tabel 3.2 menunjukkan desain penelitian.

Tabel 3.2 Desain Penelitian

R	X	O_1
R		O_2

Pengaruh perlakuan adalah $(O_1: O_2)$

Keterangan:

R = Pemilihan subjek secara acak

X = Kelompok model *Problem Based Learning* berbantuan Genially

 $O_1 = Posttest$ kelas eksperimen

 $O_2 = Posttest$ kelas kontrol

3.5 Teknik Pengumpulan Data

Penghimpunan data dilaksanakan dalam beragam lingkungan, berbagai metode dan sumber (Sugiyono, 2013). Tes adalah suatu langkah sistematis dimana individu yang diuji diberikan rangkaian stimulus dan diminta memberikan respon, yang kemudian dapat diukur atau dideskripsikan dalam bentuk angka. Bentuk tes untuk mengukur kemampuan berpikir reflektif matematis adalah *posttest. Posttest* merupakan tes yang dilakukan setelah pembelajaran yang mengimplementasikan *Problem Based Learning* dengan bantuan Genially. Tujuan dilaksanakannya ialah untuk melihat terdapat pengaruh atau tidak implementasi model *Problem Based Learning* berbantuan Genially terhadap kemampuan berpikir reflektif matematis siswa.

3.6 Instrumen Penelitian

Instrumen penelitian yang dipakai yaitu tes kemampuan berpikir reflektif matematis. Berikut kisi-kisi instrumen yang digunakan dapat dilihat pada Tabel 3.3.

Tabel 3.3 Kisi-kisi Soal Kemampuan Berpikir Reflektif Matematis

Capaian	Capaian Tujuan Fas		Indikator	Butir	
Pembelajaran	Pembelajaran	Indikator			
Siswa dapat	Menentukan	Reacting	Menyebutkan	1 dan	
menggunakan	hubungan		informasi yang	2	
hubungan			diketahui dan	2	

Capaian	Tujuan	Fase/Tingkatan	T. 191.4	Butir
Pembelajaran	Pembelajaran	Indikator	Indikator	Soal
antarsudut	antar sudut		ditanyakan	
yang terbentuk	pada garis-		dengan benar	
oleh dua garis	garis yang	Comparing	Menyajikan	
yang	berpotongan		solusi dengan	
berpotongan,	dan pada		benar dan	
dan oleh dua	dua garis		tersusun serta	
garis sejajar	sejajar yang		mengaitkannya	
yang dipotong	dipotong		dengan	
sebuah garis	oleh garis		informasi yang	
transversal	transversal		tersaji dengan	
untuk	Mengestima		tahapan yang	
menyelesaikan	si besar		benar	
masalah	sudut	Contemplating	Menilai/	
	Menggunak		membuktikan	
	an informasi		kebenaran	
	mengenai		pernyataan	
	sudut		menurut	
	(pelurus,		konsep/sifat	
	penyiku,		yang	
	sehadap,		diaplikasikan	
	dan		dengan benar	
	berseberang		dan menyusun	
	an pada		simpulan dengan	
	bangun		benar	
	datar untuk			
	menyelesaik			
	an masalah			
	untuk sudut			
	yang tidak			
	diketahui)			
		<u> </u>		

Capaian	Tujuan	Fase/Tingkatan	Indikator	Butir
Pembelajaran	Pembelajaran	Indikator	muikatoi	Soal
	Menyelesai			
	kan masalah			
	yang			
	berkaitan			
	dengan			
	garis dan			
	sudut			

(1) Uji Validitas

Validitas memiliki hubungan dengan sejauh mana variabel menaksirkan aspek yang semestinya diukur. Uji validitas merupakan metode untuk menentukan kadar alat ukur yang diterapkan dapat mengukur apa yang dimaksud (Sugiharto dan Sitinjak,2006) dalam (Sanaky *et al.*, 2021). Validitas sebuah tes dapat dinilai tinggi ketika tes tersebut berhasil memenuhi tujuan pengukurannya, yaitu menghasilkan data yang presisi dan sesuai dengan maksud pelaksanaan tes. Sebaliknya, jika hasil yang diperoleh dari suatu tes tidak selaras dengan sasaran pengukuran yang diinginkan, maka tes tersebut dianggap memiliki validitas rendah. Dengan kata lain, kualitas validitas tes bergantung pada sejauh mana tes tersebut sanggup menilai apa yang semestinya diukur dan memberikan informasi yang relevan dengan tujuan pengujian.

Pengujian pada instrumen melalui penilaian pakar atau *expert judgement*. Para pakar diberikan lembar validasi untuk kemudian ditentukan tingkat validitasnya. Para pakar yang berpartisipasi untuk menilai validitas instrumen pada penelitian ini diantaranya 2 dosen Pendidikan Matematika. Hal-hal yang diperbaiki selama validasi disajikan dalam Tabel 3.4.

Tabel 3.4 Validasi Instrumen

Tanggal	Validator	Face Validity	Content Validity	Ket
	1	Konteks pada soal masih harus disesuaikan dengan tujuan	Memenuhi kriteria valid	
Februari 2025	2	Kalimat pada soal masih harus diubah karena dapat menimbulkan makna ganda	Soal nomor 1 masih harus diperbaiki dalam hal kejelasan maksud soal dan kesesuaian dengan indikator	Revisi
13 Februari 2024	1 dan 2	Menunjukkan soal dapat digunakan dengan tepat	Menunjukkan soal dapat digunakan dengan tepat	Valid

Pada penelitian ini mengukur validitas melalui instrumen guna menentukan kriteria validitas item setiap soal. Agar mempermudah perhitungan validitas dapat menggunakan SPPS, dimana validitas item soal dengan SPPS versi-22 adalah jika $r_{hitung} \geq r_{tabel}$ (Sig. (2 – tailed) < 0,05). Namun, guna menunjukkan ketidaksesuaian hasil, sehingga penghitungan validitas item dengan koefisien product moment (r):

$$r_{xy} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{(N \sum x^2 - (\sum x)^2 (N \sum y^2 - (\sum y)^2)}}$$

 r_{xy} : koefisien yang merepresentasikan hubungan antara X dan Y

N : banyaknya responden

 $\sum xy$: akumulasi dari perkalian variabel X dan Y

 $\sum x^2$: akumulasi kuadrat nilai X

 $\sum y^2$: akumulasi kuadrat nilai Y

 $(\sum x)^2$: hasil kuadrat akumulasi nilai X

 $(\sum y)^2$: hasil kuadrat akumulasi nilai Y

Dalam mengukur validitas terdapat kriteria untuk menjadi ukuran kualitas validitas data tersebut. Untuk kriteria indeks validitas instrumen menurut Arikunto dalam Yusup (2018).

Tabel 3.5 Kriteria Indeks Validitas

Koefisien Relasi	Interpretasi Validitas
$0.80 \le r_{xy} < 1.00$	Sangat Tinggi
$0,60 \le r_{xy} < 0.80$	Tinggi
$0,40 \le r_{xy} < 0,60$	Sedang
$0.20 \le r_{xy} < 0.40$	Rendah
$0.00 \le r_{xy} < 0.20$	Sangat Rendah

Untuk menentukan validitas item, nilai r_{hitung} (koefisien korelasi) dibandingkan dengan r_{tabel} . Jika r_{hitung} melebihi r_{tabel} , maka data disebut valid dan jika r_{hitung} kurang dari r_{tabel} , maka data disebut tidak valid. Dengan kata lain, jika nilai Sig. < 0.05 maka data valid dan jika Sig. > 0.05 maka data tidak valid.

Sebelum dilaksanakan penelitian, dilakukan validasi soal tes oleh dua dosen Pendidikan matematika yang bertindak sebagai validator dan diuji cobakan ke satu kelas yang dipilih secara acak di luar sampel yang digunakan. Pengujian guna menunjukkan kesesuaian soal dalam pengukuran dan perolehan data penelitian dari responden. Uji validitas dilakukan kepada 24 orang siswa, dimana r_{tabel} jika menggunakan 24 responden adalah 0,433 dengan taraf signifikansi 5%. Tabel 3.6 menunjukkan hasil uji validitas soal tes kemampuan berpikir reflektif matematis.

Tabel 3.6 Hasil Uji Validitas Soal Tes

Soal	Indikator	r_{hitung}	r_{tabel}	Keterangan
	Reacting	0,911	0,433	Valid
1	Comparing	0,652	0,433	Valid
	Contemplating	0,673	0,433	Valid
	Reacting	0,916	0,433	Valid
2	Comparing	0,922	0,433	Valid
	Contemplating	0,784	0,433	Valid

Tabel 3.6 menunjukkan bahwa 2 soal dengan masing-masing soal terdiri dari 3 indikator kemampuan berpikir reflektif matematis adalah valid.

(2) Uji Reliabilitas

Masri Singarimbun dalam (Sanaky et al., 2021) menyatakan reliabilitas ialah suatu indikator yang memperlihatkan level sebuah alat ukur mampu dihandalkan atau dipercaya. Jika alat ukur digunakan berulang kali untuk mengukur fenomena yang serupa dan hasil yang didapatkan relatif stabil, maka alat tersebut dinilai reliabel. Singkatnya, reliabilitas menggambarkan tingkat ketepatan alat ukur dalam mengevaluasi fenomena yang sama. Secara empiris, tingkat reliabilitas ini dapat dinyatakan dalam bentuk angka yang familiar dengan sebutan koefisien reliabilitas. Reliabilitas dengan level tinggi tercermin dari nilai rxx yang hamper mencapai 1. Secara garis besar, reliabilitas dikategorikan memadai jika mencapai angka 0,700 atau lebih. Jika nilai alpha lebih dari 0,700, mengindikasikan bahwa reliabilitas telah memadai (*sufficient reliability*), sedangkan jika alpha melebihi 0,800 berarti seluruh item bersifat reliabel dan keseluruhan tes menunjukkan reliabilitas yang kuat secara konsisten. Pengukuran dilakukan dengan SPSS versi-22 atau rumus *Alpha Cronbach*, yaitu:

$$r_{11} = \left(\frac{k}{k-1}\right) \cdot \left(1 - \frac{\sum \sigma_{b^2}}{\sigma_{t^2}}\right)$$
, dengan varians $\sigma_t = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n}$

 r_{11} : skor reliabilitas

k: kuantitas soal

 $\sum \sigma_{b^2}$: akumulasi varians butir

 σ_t : varians total

x: skor setiap soal

n: kuantitas siswa

Untuk menentukan reliabilitas item, jika nilai *Cronbach Alpha*. > 0,07 maka data reliabel dan jika *Cronbach Alpha*. < 0,07 maka data tidak reliabel. Tabel 3.7 menunjukkan hasil uji reliabilitas soal tes kemampuan berpikir reflektif matematis.

Tabel 3.7 Hasil Uji Reliabilitas Soal Tes

Jumlah Soal	Indikator	Cronbach's Alpha	Syarat	Keterangan
	Reacting			Reliabel
2	Comparing	0,900	0,700	Reliabel
	Contemplating			Reliabel

Tabel 3.7 menunjukkan bahwa dua soal dengan masing-masing soal terdiri tiga indikator kemampuan berpikir reflektif matematis adalah reliabel. Sehingga, soal tersebut dianggap valid dan reliabel untuk dipilih menjadi instrumen penelitian.

3.7 Teknik Analisis Data

Penilaian kemampuan berpikir reflektif matematis menggunakan kriteria penilaian adalah sebagai berikut.

Tabel 3.8 Rubrik Penilaian Kemampuan Berpikir Reflektif Matematis

Aspek	Indikator	Skor						
Reacting	Mencatat informasi yang diketahui dan ditanya	3						
(berpikir	dengan benar							
reflektif untuk	Dapat mencatat informasi yang diketahui dengan	2						
aksi)	benar tetapi informasi yang ditanya salah.	2						
	Dapat mencatat informasi yang ditanya dengan benar	1						
	tetapi informasi yang diketahui salah.	1						
	Mencatat informasi yang diketahui dan ditanya salah	0						
	atau tidak ada jawaban.	U						
Comparing	Dapat menyajikan solusi dengan benar serta							
(berpikir	mengaitkannya dengan informasi yang tersaji dengan	3						
reflektif untuk	tahapan yang benar.							
evaluasi)	Dapat menyajikan solusi dengan benar tetapi masih	2						
	ada tahapan yang salah.	2						
	Dapat menyajikan solusi dengan benar namun belum	1						
	bisa mengaitkan antar informasi yang disajikan.	1						

Aspek	Indikator						
	Menyajikan solusi salah atau tidak ada jawaban.	0					
Contemplating	Menilai/membuktikan kebenaran pernyataan menurut						
(berpikir	konsep/sifat yang diaplikasikan dengan benar dan	3					
reflektif untuk	menyusun simpulan dengan benar.						
inkuiri kritis)	Menilai/membuktikan kebenaran pernyataan menurut						
	konsep/sifat yang diaplikasikan dengan benar dan	2					
	menyusun simpulan salah.						
	Menilai/membuktikan kebenaran pernyataan menurut						
	konsep/sifat yang diaplikasikan namun salah dan	1					
	menyusun simpulan salah						
	Tidak dapat menilai/membuktikan kebenaran						
	pernyataan menurut konsep/sifat yang diaplikasikan	0					
	dan tidak dapat menyusun simpulan.						

Dalam rangka memperoleh soluasi atas rumusan masalah, hasil pengumpulan data diproses dan ditelaah dengan metode statistik tertentu sehingga menghasilkan kesimpulan atau hasil penelitian. Proses olah data yang dilaksanakan ialah uji normalitas, uji homogenitas, dan uji t. Uji Mann-Whitney dipilih jika data tidak berdistribusi normal sedangkan jika data tidak homogen alternatif uji yang bisa dipilih adalah uji t'.

3.7.1 Uji normalitas

Uji normalitas yaitu metode yang dapat memberikan informasi apakah data yang dimiliki memiliki distribusi normal sehingga layak digunakan dalam analisis statistik parametrik. Untuk menguji normalitas, digunakan *software* SPSS versi-22 dengan metode uji *Shapiro-Wilk* karena data yang digunakan tidak melebihi 50. Rumus perhitungan Uji *Shapiro-Wilk*:

$$T_3 = \frac{1}{D} \left[\sum_{i=1}^k a_i (X_{n-i+1} - X_i) \right]^2$$

Keterangan:

D: Coefficient test Shapiro Wilk

 X_{n-i+1} : angka ke n-i+1 pada data

 X_i : angka ke I pada data

Hipotesisnya adalah sebagai berikut.

 H_0 : data berasal dari populasi berdistribusi normal

 H_a : data tidak berasal dari populasi yang berdistribusi normal

Dengan taraf signifikansi $\alpha = 5\%$, maka tolok ukur ujinya adalah:

Ketika nilai Sig. > 0.05 maka H_0 diterima dan H_a ditolak.

Ketika nilai Sig. < 0.05 maka H_0 ditolak dan H_a diterima.

3.7.2 Uji Homogenitas

Uji homogenitas perlu diterapkan sebagai langkah untuk mengkonfirmasi bahwa data dasar yang akan dianalisis memiliki tingkat homogenitas. Uji ini bertujuanh untuk mengevaluasi terdapat atau tidaknya persamaan varians dari data tersebut. Uji statistik yang dipilih adalah Uji *Kruskall-Walis* dengan rumus:

$$H = \frac{12}{N(N-1)} \sum_{i=1}^{k} \frac{R_j^2}{n_j} - 3(N+1)$$

Keterangan:

 $N = \sum N_j$: kuantitas kasus di semua sampel

k: banyak sampel

 n_i : banyak kasus dalam sampel ke-j

 R_i : jumlah ranking dalam sampel

Hipotesisnya adalah:

 H_0 : Varians homogen ($\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2 = \sigma_6^2 = \sigma_7^2$) artinya seluruh individu dalam populasi menunjukkan sebaran kemampuan awal yang serupa.

 H_a : Varians tidak homogen artinya penyebaran kemampuan awal tidak sama di semua anggota populasi.

Dengan taraf signifikansi $\alpha = 5\%$, maka tolok ukur ujinya adalah:

Jika nilai Sig. (Based On Mean) > 0,05 maka H_0 diterima dan H_a ditolak.

Jika nilai Sig. ($Based\ On\ Mean$) $< 0.05\ maka\ H_0\ ditolak\ dan\ H_a\ diterima.$

3.7.3 Uji T

Apabila data populasi telah selesai diuji menggunakan uji normalitas dan uji homogenitas, tahap setelahnya yaitu melaksanakan pengujian hipotesis. Apabila data populasi berdistribusi normal dan mempunyai tingkat homogenitas yang serupa, maka pengujian hipotesis dilaksanakan dengan menggunakan Uji T untuk dua sampel independen (T-*Independent*).

Hipotesis penelitian:

 H_0 : Kemampuan berpikir reflektif matematis siswa yang mengimplementasikan model *Problem Based Learning* berbantuan Genially tidak lebih baik atau sama dengan siswa yang mengimplementasikan model *Problem Based Learning*.

 H_a : Kemampuan berpikir reflektif matematis siswa yang mengimplementasikan model *Problem Based Learning* berbantuan Genially lebih baik dibandingkan siswa yang mengimplementasikan model *Problem Based Learning*.

Hipotesis statistik:

 $H_0: \mu_{x_1} \leq \mu_{x_2}$

 $H_a: \mu_{x_1} > \mu_{x_2}$

Keterangan:

 μ_{x_1} : rerata kelas eksperimen

 μ_{x_2} : rerata kelas kontrol

Berikut pengujian hipotesis memakai Uji T-Independent dengan taraf signifikansi $\alpha=0.05$.

$$t = \frac{\bar{x}_1 - \bar{x}_2}{S_{gab}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Dengan

$$S_{gab} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$$db = n_1 + n_2 - 2$$

Keterangan:

 \bar{x}_1 : rerata kemampuan berpikir reflektif matematis siswa kelas model *Problem* Based Learning berbantuan Genially

 \bar{x}_2 : rerata kemampuan berpikir reflektif matematis siswa kelas model *Problem* Based Learning

 n_1 : jumlah sampel kelas model *Problem Based Learning* berbantuan Genially

 n_2 : jumlah sampel kelas model *Problem Based Learning*

 s_1^2 : varians kelas model *Problem Based Learning* berbantuan Genially

 s_1^2 : varians kelas model *Problem Based Learning*

db: derajat kebebasan

Uji T-Independent dilakukan dengan taraf signifikan $\alpha=5\%$, maka tolok ukur ujinya adalah:

Jika nilai Sig. > 0.05 maka H_0 diterima dan H_1 ditolak. Artinya, model Problem Based Learning berbantuan Genially tidak memiliki pengaruh terhadap kemampuan berpikir reflektif matematis siswa.

Jika nilai Sig. < 0.05 maka H_0 ditolak dan H_1 diterima. Artinya model Problem Based Learning berbantuan Genially memiliki pengaruh terhadap kemampuan berpikir reflektif matematis siswa.

3.7.4 Uji Mann-Whitney

Uji Mann-Whitney menjadi pengujian yang dilakukan untuk menguji asal dua sampel dimana diharapkan berasar dari populasi yang sama. Uji ini berfungsi untuk memnyandingkan median dari dua kelompok yang tidak saling bergantung, terutama ketika rasio data variabel independennya bersifat urutan atau tingkatan tetapi tidak terdistribusi normal.

Hipotesis penelitian:

 H_0 : Kemampuan berpikir reflektif matematis siswa yang mengimplementasikan model *Problem Based Learning* berbantuan Genially tidak lebih baik atau sama dengan siswa yang mengimplementasikan model *Problem Based Learning*.

 H_a : Kemampuan berpikir reflektif matematis siswa yang mengimplementasikan model *Problem Based Learning* berbantuan Genially lebih baik dibandingkan dengan siswa yang mengimplementasikan model *Problem Based Learning*.

Hipotesis statistik:

$$H_0: \mu_{x_1} \leq \mu_{x_2}$$

$$H_a: \mu_{x_1} > \mu_{x_2}$$

Rumus uji Mann-Whitney:

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - \sum R_1$$

$$U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - \sum R_2$$

Keterangan:

 $U_1 = \text{jumlah rangking sampel kesatu}$

 U_2 = jumlah rangking sampel kedua

 n_1 = sampel kesatu

 n_2 = sampel kedua

 R_1 = total peringkat pada sampel kesatu

 R_2 = total peringkat pada sampel kedua

Untuk sampel kecil, uji Mann-Whitney membandingkan nilai U_{hitung} dengan nilai kritis U (U_1 dan U_2) pada tabel Mann-Whitney, dimana nilai U terkecil digunakan sebagai acuan. Untuk sampel besar, analisis dilanjutkan dengan uji z berbasis distribusi normal.

$$z_{hitung} = \frac{U - E(U)}{\sqrt{Var(U)}}$$

$$E(U) = \frac{n_1 \cdot n_2}{2}$$

$$Var(U) = \frac{n_1 \cdot n_2 (n_1 + n_2 + 1)}{12}$$

Setelah nilai z_{hitung} ditentukan, kemudian didapatkan kesimpulan dengan menyandingkannya dengan besar z_{tabel} . Berikut merupakan kriteria pengujiannya: Hipotesis uji U untuk sampel kecil:

Jika $U_{hitung} \geq U_{tabel}$, maka H_0 diterima dan H_a ditolak, artinya model Problem Based Learning berbantuan Genially tidak berpengaruh terhadap kemampuan berpikir reflektif matematis siswa.

Jika $U_{hitung} < U_{tabel}$, maka H_0 ditolak dan H_a diterima, artinya model *Problem Based Learning* berbantuan Genially berpengaruh terhadap kempampuan berpikir reflektif matematis siswa.

3.7.5 Uji T'

Uji t' (*Welch's t-test*) adalah salah satu variasi dari uji t yang digunakan ketika asumsi homogenitas varians (kesamaan varians) dalam uji T-*independent* tidak terpenuhi.

Hipotesisnya adalah:

 H_0 : Kemampuan berpikir reflektif matematis siswa yang mengimplementasikan model *Problem Based Learning* berbantuan Genially tidak lebih baik atau sama dengan siswa yang mengimplementasikan model *Problem Based Learning*.

 H_a : Kemampuan berpikir reflektif matematis siswa yang mengimplementasikan model *Problem Based Learning* berbantuan Genially lebih baik daripada siswa yang mengimplementasikan model *Problem Based Learning*.

Hipotesis statistiknya adalah sebagai berikut.

$$H_0: \mu_{x_1} \leq \mu_{x_2}$$

$$H_a: \mu_{x_1} > \mu_{x_2}$$

Keterangan:

 μ_{x_1} : rerata kelas eksperimen

 μ_{x_2} : rerata kelas control

Statistik uji t' dapat diperoleh melalui rumus:

$$t' = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}}$$

Keterangan:

 \bar{x}_1 : rerata kemampuan berpikir reflektif matematis siswa yang menerapkan model *Problem Based Learning* berbantuan Genially

 \bar{x}_2 : rerata kemampuan berpikir reflektif matematis siswa yang menerapkan model *Problem Based Learning*

 n_1 : jumlah sampel kelas model *Problem Based Learning* berbantuan Genially

 n_2 : jumlah sampel kelas model *Problem Based Learning*

 s_1^2 : varians kelas model *Problem Based Learning* berbantuan Genially

 s_1^2 : varians kelas model Problem Based Learning

Berikut merupakan kriteria pengujiannya:

Jika $t_{hitung} \leq t_{tabel}$, maka H_0 diterima dan H_a ditolak, bermakna model *Problem Based Learning* berbantuan Genially tidak memiliki pengaruh terhadap kemampuan berpikir reflektif matematis siswa.

Jika $t_{hitung} > t_{tabel}$, maka H_0 ditolak dan H_a diterima, bermakna model *Problem Based Learning* berbantuan Genially memiliki pengaruh terhadap kemampuan berpikir reflektif matematis siswa.

3.8 Waktu dan Tempat Penelitian

3.8.1 Waktu Penelitian

Penelitian ini berlangsung dari Oktober 2024 hingga Juni 2025. Tabel 3.9 menunjukkan rincian waktu penelitian.

Tabel 3.9 Waktu Penelitian

		Bulan								
No.	Kegiatan	Okt	Nov	Des	Jan	Feb	Mar	Apr	Mei	Juni
		2024	2024	2024	2025	2025	2025	2025	2025	2025
1.	Mendapatkan									
	SK Dosen									
	Pembimbing									
2.	Pengajuan									
۷.	Judul									
3.	Pembuatan									
3.	Proposal									
4.	Seminar									
4.	Proposal									
5.	Mengurus									
J.	Surat Izin									
6.	Penyusunan									
0.	Instrumen									
	Melaksanaka									
7.	n Penelitian									
	ke Lapangan									

		Bulan								
No.	Kegiatan	Okt	Nov	Des	Jan	Feb	Mar	Apr	Mei	Juni
		2024	2024	2024	2025	2025	2025	2025	2025	2025
8.	Pengumpula									
	n dan									
	Pengolahan									
	Data									
9.	Penyusunan									
	Skripsi									
10.	Pelaksanaan									
	Sidang									
	Tahap 1									
11.	Pelaksanaan									
	Sidang									
	Tahap 2									

3.8.2 Tempat Penelitian

Penelitian ini berlangsung di SMPN 2 Rajapolah yang beralamat di Kp. Jetung Rt/Rw 02/02, Desa Tanjungpura Kecamatan Rajapolah Kabupaten Tasikmalaya Jawa Barat.