
BAB III

METODE PENELITIAN

A. Kerangka Konsep

Gambar 3.1 Kerangka Konsep

Keterangan:

- a) : Variabel diteliti sebagai variabel pengganggu
- b) : Variabel tidak diteliti merupakan keterbatasan peneliti
- c) : Variabel tidak diteliti dikendalikan oleh kriteria eksklusi

B. Hipotesis

- Ha : Ada hubungan antara asupan karbohidrat dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025.
 - Ho : Tidak ada hubungan antara asupan karbohidrat dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025

- Ada hubungan antara asupan protein dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025.
 - Ho : Tidak ada hubungan antara asupan protein dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025
- Ada hubungan antara asupan lemak dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025.
 - Ho : Tidak ada hubungan antara asupan lemak dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025
- 4. Ha : Ada hubungan antara asupan serat dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025.
 - Ho : Tidak ada hubungan antara asupan serat dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025
- Ha : Ada hubungan antara asupan energi dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas Karangnunggal tahun 2025.
 - Ho : Tidak ada hubungan antara asupan energi dengan kadar glukosa darah sewaktu pada pasien rawat jalan di UPTD Puskesmas

Karangnunggal tahun 2025

C. Variabel Penelitian dan Definisi Operasional

1. Variabel Penelitian

- a. Variabel bebas: asupan karbohidrat, protein, lemak, energi dan serat
- b. Variabel terikat: kadar glukosa darah sewaktu
- c. Variabel pengganggu : jenis kelamin, usia, aktivitas fisik, konsumsi alkohol, dan genetik.

2. Definisi Operasional

Tabel 3.1 Definisi Operasional

No	Variabel	Definisi	Alat Ukur	Hasil Ukur	Skala
		Operasional			
Va	riabel Bebas				
1	Asupan	Jumlah asupan	Food	gram	Rasio
	Karbohidrat	karbohidrat dari	recall		
		makanan dan	1x24 Jam		
		minuman yang			
		dikonsumsi			
		selama 24 jam			
		yang diukur			
		dengan metode food recall 24			
		iam.			
$\frac{1}{2}$	Asupan	Jumlah asupan	Food	gram	Rasio
	Protein	protein dari	recall	8	
		makanan yang	1x24 Jam		
		dikonsumsi selama			
		24 jam yang			
		diukur dengan			
		metode food			
		recall 24 jam.			
	Asupan	Jumlah asupan	food	gram	Rasio
I	Lemak	lemak dari	recall		
		makanan yang	1x24 Jam		
		dikonsumsi selama			
		24 jam yang			
		diukur dengan			

metode *food* recall 24 jam.

4 A	Asupan Serat	Jumlah asupan serat dari makanan yang dikonsumsi selama 24 jam yang diukur dengan metode <i>food</i>	Food recall 1x24 Jam	gram	Rasio
	Asupan Energi	recall 24 jam. Jumlah asupan energi dari makanan dan minuman selama 24 jam yang diukur dengan metode food recall 24 jam	Food recall 1x24 Jam	kkal	Rasio
Vai	riabel Terika	nt			
6	Kadar Glukosa Darah Sewaktu	Hasil pemeriksaan kadar glukosa darah sewaktu yang diukur dengan Glukometer yang diambil dari sampel darah kapiler responden	Glukometer	mg/dL	Rasio
	riabel Pengg		V	Tolore	Dania
7	Usia	Lama hidup responden dari lahir sampai waktu penelitian	Kuesioner Biodata	Tahun	Rasio
8	Jenis Kelamin	Karakteristik biologis responden yang dilihat dari luar penampilan	Kuesioner Biodata (di form recall) Wawancara	Laki- laki/Perempuan	Nominal

D. Desain Penelitian

Desain penelitian yang digunakan adalah deskriptif analitik yaitu menganalisis hubungan antar variabel dengan pendekatan *cross-sectional*, yakni suatu penelitian yang semua variabel baik variabel independen maupun variabel dependen diobservasi pada kurun waktu yang sama (Masturoh, 2018). Penelitian ini dilakukan di UPTD Puskesmas Karangnunggal. Dalam penelitian ini peneliti ingin mengetahui hubungan antara asupan zat gizi makro, energi dan serat dengan kadar glukosa darah sewaktu.

E. Populasi dan Sampel

1. Populasi

Populasi pada penelitian ini, yaitu rata-rata jumlah pasien yang berkunjung melakukan pemeriksaan glukosa darah sewaktu selama satu tahun terakhir sebanyak 356 pasien di UPTD Puskesmas Karangnunggal.

2. Sampel

a. Cara Pengambilan Sampel

Teknik pengambilan sampel *non probability sampling* dengan *quota sampling* yang dilakukan pada penelitian ini adalah teknik pengambilan sampel yang tidak memberi peluang atau kesempatan sama bagi setiap unsur atau anggota populasi dengan menentukan sampel dari populasi yang mempunyai ciri-ciri atau kriteria tertentu sampai jumlah (kuota) yang diinginkan terpenuhi (Sugiyono, 2020).

Pengambilan sampel pada penelitian ini mengacu pada rumus slovin. Menurut Machali (2021) rumus slovin adalah formula untuk

menghitung jumlah sampel minimal jika perilaku sebuah populasi belum diketahui secara pasti. Jumlah sampel yang digunakan pada penelitian ini yaitu :

$$n = \frac{N}{1 + (N(\alpha^2))}$$

$$n = \frac{356}{1 + (356(0,1^2))}$$
$$n = \frac{356}{1 + 3,56}$$
$$n = 78.07$$

Jumlah sampel yang diambil adalah 79 responden.

Keterangan:

N: jumlah populasi n: jumlah sampel

 α : tingkat kesalahan (0,1)

b. Kriteria Inklusi dan Eksklusi

Dalam penelitian ini ditentukan kriteria inklusi dan eksklusi sebagai berikut:

- 1) Kriteria Inklusi
 - a) Bersedia menjadi responden
 - b) Bersedia melakukan pemeriksaan glukosa darah sewaktu
- 2) Kriteria Eksklusi
 - a) Responden yang mengonsumsi obat penurun glukosa darah
 - b) Responden yang mengonsumsi alkohol

F. Instrumen Penelitian

Instrumen penelitian yang digunakan dalam penelitian ini adalah:

1. Informed Consent

Lembar *informed consent* diisi responden sebagai persetujuan responden secara sukarela dan tidak ada unsur paksaan dalam menjadi sampel penelitian.

2. Kuesioner Skrining

Lembar kuesioner skrining digunakan untuk mengidentifikasi responden yang berisiko atau memiliki potensi masalah kesehatan tertentu.

3. Lembar *food recall* 1x24 Jam dan buku foto makanan

Formulir *food recall* digunakan sebagai alat untuk mengetahui jumlah rata- rata asupan zat gizi makro, asupan serat, dan asupan energi dari makanan yang dikonsumsi oleh responden. Buku foto makanan digunakan sebagai instrumen pendukung untuk keakuratan jenis, jumlah dan porsi yang dikonsumsi oleh responden.

4. Glukometer

Glukometer merupakan alat yang digunakan untuk mengukur kadar glukosa darah sewaktu. Penggunaan alat glukometer pada penelitian ini tervalidasi dan mempunyai presisi tinggi serta jumlah strip glukometer sesuai dengan kebutuhan penelitian. Penggunaan glukometer yang dilakukan dalam penelitian ini menggunakan merk SINOCARE SAFE AQ PRO I. Adapun penggunaan glukometer adalah sebagai berikut (Perkeni, 2021):

- a. Memilih tempat tusukan: memilih tepi ujung jari tangan (bagian lateral jari) terutama pada jari ke 3 atau 4 dan 5 karena kurang menimbulkan rasa nyeri. Jika tidak memungkinkan, pemeriksaan dapat dilakukan di daerah telapak tangan pangkal ibu jari (tenar). Pada kondisi tertentu (misal luka bakar pada kedua tangan), penusukan dapat dilakukan pada lengan bawah, paham dan telapak tangan.
- b. Mencuci tangan dengan air dan sabun dan keringkan. Bersihkan tempat yang akan ditusuk dengan alkohol 76%, gunakan tetesan darah pertama.
- c. Melakukan pemijatan ringan ujung jari sebelum ditusuk. Setelah ditusuk, jari tidak boleh ditekan-tekan lagi, karena sampel darah yang keluar merupakan plasma bukan serum.
- d. Menggunakan lanset yang tipis dan tajam untuk mengindari rasa nyeri. Gunakan satu lanset untuk satu kali penggunaan untuk mencegah transmisi bakteri patogen, infeksi kulit, dan reaksi kulit lainnya, serta mencegah penggunaan jarum lanset yang tumpul.
- e. Melakukan pengaturan kedalaman tusukan lanset sesuai kebutuuhan masing- masing responden, dengan mengaturnya melalui angka-angka yang tertera pada pen pemegang lanset. Jika menggunakan lanset tanpa pen (*safety pro uno*), maka kedalaman tidak bisa diatur.
- f. Melakukan penusukan dengan lanset.
- g. Meneteskan darah pada ujung strip.
- h. Jika pemeriksaan telah selesai, bersihkan darah pada ujung jari dengan

alkohol atau pun kapas.

i. Melakukan pencatatan hasil dan waktu PGDM.

G. Pengumpulan Data

1. Sumber Data

a. Data primer

Data primer yang digunakan dalam penelitian ini adalah data yang diperoleh dari responden, meliputi asupan zat gizi makro, asupan energi, asupan serat, dan kadar glukosa darah sewaktu. Alat bantu yang digunakan yaitu formulir *informed consent*, formulir *recall* 1 x 24 jam, buku foto makanan dan glukometer.

b. Data Sekunder

Data sekunder yang digunakan dalam penelitian ini yaitu gambaran umum lokasi penelitian dan hasil kunjungan pasien yang melakukan pemeriksaan glukosa darah sewaktu satu tahun terakhir.

2. Prosedur Penelitian

a. Survei Awal

Survei awal dilakukan pada tanggal Agustus 2024. Data sekunder yang diperoleh berupa data kunjungan pasien satu tahun terakhir serta data pendukung lainnya yang diperlukan untuk penelitian.

b. Tahap persiapan penelitian

Pada tahapan persiapan ini dilakukan pengumpulan *literature* dan bahan-bahan kepustakaan untuk materi penelitian sebagai bahan referensi penelitian. Tahap ini juga dilakukan pengurusan perizinan

yang diperlukan melalui Kesbangpol Kabupaten Tasikmalaya. Berkoordinasi dengan pihak UPTD Puskesmas Karangnunggal terkait responden, tempat dan waktu penelitian. Pada tahap ini juga dilakukan persiapan instrumen penelitian meliputi *informed consent*, formulir *recall* 1x24 jam, buku foto makanan serta glukometer.

c. Tahap pelaksanaan

Peneliti dibantu oleh satu orang Alumni Prodi Kesehatan Masyarakat Universitas Siliwangi Angkatan 2020. Pelaksanaan penelitian dilakukan pada bulan Januari 2025 dengan tahapan penelitian sebagai berikut :

- Peneliti menyampaikan kepada responden tentang penjelasan penelitian dan persetujuan (informed consent) untuk menjadi responden.
- 2) Peneliti melakukan wawancara food recall kepada responden yang dilaksanakan sebelum pengambilan sampel glukosa darah sewaktu.
- Peneliti melakukan pengambilan sampel glukosa darah sewaktu kepada responden lalu melakukan pencatatan di catatan yang telah tersedia.

H. Pengolahan dan Analisis Data

1. Pengolahan Data

a. *Editing* Data, adalah melakukan pemeriksaan jawaban *food recall* 1 x
 24 Jam serta pemeriksaan catatan hasil pengukuran kadar glukosa darah

sewaktu.

b. Scoring Data

 Asupan Zat Gizi Makro, Asupan Energi, dan Asupan Serat
 Data dari formulir food recall 1 x 24 Jam dimasukan diberi nilai dengan menggunakan program Nutrisurvey. Luaran dari pengolahan data zat gizi diambil dalam satuan:

Karbohidrat : gram

Protein : gram

Lemak : gram

Serat : gram

Energi : kkal

2) Kadar Glukosa Darah Sewaktu

Dilihat dari hasil pemeriksaan catatan hasil pengukuran kadar glukosa darah sewaktu. Satuannya yaitu mg/dL.

- c. *Entry* Data, memasukkan data asupan zat gizi makro, asupan serat, dan asupan energi dari hasil perhitungan *Nutrisurvey*. Memasukkan juga data kadar glukosa darah sewaktu hasil pemeriksaan dengan menggunakan program *SPSS* untuk dianalisis data.
- d. Tabulasi Data, data yang sudah diolah kemudian ditampilkan dengan menggunakan tabel dan grafik untuk memudahkan proses analisis.
- e. *Cleaning* Data, data yang diperoleh diperiksa kembali kelengkapannya dari setiap variabel.

2. Analisis Data

a. Analisis Univariat

1) Karakteristik Responden

a) Jenis Kelamin

Karakteristik jenis kelamin dinyatakan dalam frekuensi.

Tabel 3.2 Distribusi Frekuensi

	Distribusi i rekuciisi			
Jenis Kelamin	Jumlah	Persentase		
Laki-laki	23	29.1		
Perempuan	56	70.9		
Total	79	100		

b) Usia

Uji normalitas data dengan menggunakan Kolmogorov Smirnov (data > 50). Hasil uji Kolmogorov Smirnov diperoleh p value = 0,379 (> 0,05), berarti data usia terdistribusi normal, maka karakteristik usia dinyatakan dalam tendensi sentral Mean \pm SD.

2) Variabel Penelitian

a) Uji Normalitas

Seluruh data merupakan data numerik (rasio), maka analisis univariat adalah menghitung tendensi sentral (mean, median, SD, nilai minimum, dan nilai maksimum) yang ditentukan oleh Uji Normalitas Kolmogorov Smirnov. Data dinyatakan terdistribusi normal jika p value (> 0,05). Hasil uji normalitas

variabel penelitian dapat dilihat pada Tabel 3.2.

Tabel 3.2 Hasil Uji Normalitas Variabel Peneliti

Variabel	p value	Interpretasi
Asupan karbohidrat	0,328	Data terdistribusi normal
Asupan protein	0,281	Data terdistribusi normal
Asupan lemak	0,575	Data terdistribusi normal
Asupan energi	0,069	Data terdistribusi normal
Asupan serat	0,028	Data tidak terdistribusi normal
Glukosa darah sewaktu	0,000	Data tidak terdistribusi normal

b) Tendensi Sentral

Variabel asupan karbohidrat, asupan protein, asupan lemak, dan asupan energi terdistribusi normal, maka tendensi sentral yang dihitung adalah mean dan simpangan baku (SB). Asupan serat dan gula darah sewaktu datanya tidak terdistribusi normal, maka tendensi sentral yang dihitung median, nilai minimum, dan nilai maksimum.

b. Analisis Bivariat

Hasil uji normalitas *Kolmogorov-Smirnov* (Tabel 3.2) menunjukkan bahwa data kadar glokosa darah sewaktu sebagai variabel terikat tidak terdistribusi normal maka analisis data yang digunakan untuk menentukan hubungan antar variabel adalah uji kolerasi *Spearman Rank*. Dasar pengambilan keputusan dari uji korelasi pada $\rho < 0.05$.

1) Menentukan arah korelasi menggunakan Scatter-Plot:

 a) Apabila bertanda positif, artinya ketika variabel bebas ada peningkatan maka variabel terikat ada peningkatan, demikian sebaliknya.

- b) Apabila bertanda negatif, artinya ketika variabel bebas ada peningkatan maka variabel terikat ada penurunan, demikian sebaliknya
- 2) Menentukan kekuatan hubungan menggunakan kriteria keeratan hubungan yang ditunjukkan pada Tabel 3.3

Tabel 3.3 Interval Koefisien Korelasi

Interval Koefisien	Tingkat Keeratan (ρ)
0,00-0,199	Sangat lemah
0,20-0,399	Rendah
0,40 - 0,599	Sedang
0,60 - 0,799	Kuat
0,80 - 1,000	Sangat kuat

Sumber: Sugiyono (2016)

Uji Man Whitney digunakan untuk melihat perbedaan kadar glukosa darah sewaktu berdasarkan jenis kelamin.