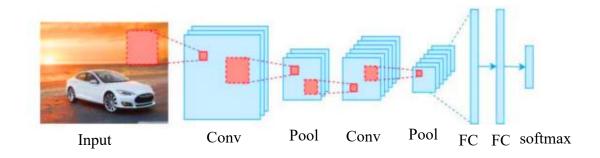
BAB II

LANDASAN TEORI

2.1 Convolutional Neural Network

Salah satu arsitektur *neural network* yang dirancang untuk mengolah data spasial, seperti gambar atau video adalah *Convolutional Neural Network* (Shiri et al., 2023). CNN dapat melakukan, pengenalan wajah, objek deteksi, analisis medis dan bahkan *Augmented Reality* (Islam et al., 2022). Kinerja CNN dapat dilihat pada arsitekturnya terdapat pada gambar 2.1.



Gambar 2. 1 CNN Arsitektur (Viswanatha et al., 2022).

Gambar 2.1 menunjukan arsitektur dari CNN. Pada arsitektur tersebut terdapat input gambar yang akan diproses oleh CNN. Kemudian, lapisan *Convolutional* untuk memfilter gambar menghasilkan *feature map* (Sen et al., 2023). Selanjutnya, *Pooling layer* merupakan teknik untuk mengurangi dimensi dari *feature map* dengan mengambil nilai antara maksimum, minimum atau ratarata (Remerscheid et al., 2022). Setelah beberapa kali diproses konvolusi dan *pooling*, kemudian *Fully Connected Layer* (FC) merupakan hasil menjadi vektor satu dimensi yang bisa digunakan untuk klasifikasi (Antonio et al., 2023). *Softmax*

adalah salah satu fungsi aktivasi yang digunakan dalam CNN untuk masalah klasifikasi multi kelas (Sen et al., 2023).

Peforma model CNN dilihat dari nilasi akurasi yang dihasilkan. Berikut persamaan (1) untuk menghitung akurasi dari model (Abdu-Aguye & Nandakumar, 2023).

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN} \tag{1}$$

Persamaan (1) digunakan untuk menghitung akurasi, di mana komponennya diperoleh dari *confusion*. *True Positive* (TP) mengacu pada jumlah kasus yang diprediksi sebagai positif dan benar positif. *True Negative* (TN) adalah jumlah kasus yang diprediksi negatif dan benar negatif. *False Positive* (FP) merujuk pada kesalahan model ketika memprediksi kelas positif, padahal sebenarnya negatif. Sedangkan *False Negative* (FN) merupakan kesalahan model ketika memprediksi kelas negatif, padahal sebenarnya positif.

Kinerja model dinilai menggunakan metrik *recall* pada data pengujian. Nilai *recall* tersebut dihitung menggunakan Persamaan (2). (Citra R et al., 2024).

$$recall = \frac{TP}{TP + TN} \tag{2}$$

Persamaan (2) merepresentasikan rasio antara jumlah prediksi benar yang dilakukan oleh model terhadap total sampel aktual pada kelas tersebut. *Recall* menggambarkan kemampuan model dalam mengenali seluruh kasus positif yang ada. Semakin tinggi nilai *recall*, semakin baik model dalam mendeteksi sebagian besar sampel positif.

Kinerja model dievaluasi menggunakan metrik *precision* pada data pengujian. Tingkat *precision* model dihitung menggunakan Persamaan (3). (Guo et al., 2023).

$$Presisi = \frac{TP}{TP + FP} \tag{3}$$

Persamaan (3) menunjukkan perbandingan antara jumlah prediksi positif yang benar dengan seluruh prediksi positif yang dibuat oleh model. Nilai *precision* yang tinggi mengindikasikan bahwa model jarang salah dalam mengidentifikasi sampel sebagai positif.

Kinerja model diukur menggunakan nilai *F1-score* pada data pengujian. Persamaan (4) digunakan untuk menghitung *F1-score* dari model. (Antonio et al., 2023).

$$F1score = 2x \frac{precision x recall}{precision + recall}$$
 (4)

Persamaan (4) merupakan rata-rata dari presisi dan recall, yang berfungsi menyeimbangkan kedua metrik tersebut. Metrik ini sangat berguna dalam situasi dengan ketidakseimbangan kelas, karena membantu model mempertimbangkan baik presisi maupun recall secara seimbang.

2.2 Adversarial

Adversarial adalah suatu pendekatan di mana input dimodifikasi secara halus sehingga tetap terlihat normal oleh manusia, namun dirancang untuk mengecoh model machine learning atau deep learning (Sen et al., 2023). Perubahan atau modifikasi ini biasanya sangat kecil sehingga tidak terdeteksi oleh penglihatan manusia, tetapi cukup untuk menyebabkan model menghasilkan prediksi yang salah

(Yang et al., 2022). Metode *adversarial* secara umum dikategorikan menjadi dua bagian, yaitu *adversarial attack* dan *adversarial defense*.

2.2.1 Adversarial Attack

Adversarial attack adalah teknik untuk melakukan serangan terhadap kelemahan machine learning terutama pada deep learning. Adversarial attack dimanipulasi secara halus sehingga model dapat menghasilkan prediksi yang salah (Sen et al., 2023). Perubahan dilakukan secara spesifik untuk melakukan serangan model tertentu. Memanfaatkan bahwa pemodelan machine learning maupun deep learning bergantung pola pola numerik (Waghela, 2024). Terdapat beberapa algoritma adversarial attack yaitu, Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD) dan Carlini & Wagner (C&W) attack (Li, 2021).

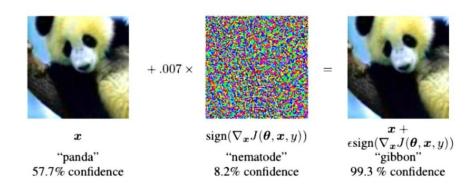
2.3 Fast Gradient Sign Method

Fast Gradient Sign Method (FGSM) merupakan salah satu teknik adversarial attack. FGSM bekerja dengan memanfaatkan gradien dari fungsi loss pada model, sehingga termasuk dalam kategori white-box attack (Sen et al., 2023). Berikut persamaan (5) perturbation rumus perhitungan FGSM (Hassan et al., 2022).

$$x_{adv} = x + \epsilon . sign (\nabla_x J(x, y))$$
 (5)

Pada persamaan (5) merupakan perhitugan dari FGSM. Pada persamaan tersebut terdapat x sebagai input asli yang akan diubah dengan menambahkan gangguan kecil. Perhitungan gangguan kecil berdasarkan gradien dari fungsi loss J(x,y). Gradien $(\nabla_x J(x,y))$ menunjukan perubahan pada input x dengan meningkatkan nilai loss (Sen & Dasgupta, 2023). Fungsi sign menentukan tanda

positif atau negatif dari gradien untuk menentukan arah perubahan yang minimal tetapi efektif. Kemudian, ϵ merupakan epsilon yang dapat mengatur besar kecilnya perubahan (Hassan et al., 2022). Semakin besar epsilon maka perubahan akan signifikan dan dapat terlihat oleh manusia. Hasil x_{adv} adalah input yang termodifikasi yang tidak terlihat oleh manusia tetapi dapat membuat model salah prediksi. Berikut gambar 2.2 merupakan contoh dari *adversarial attack* menggunakan FGSM.



Gambar 2. 2 Contoh Penerapan FGSM.

Pada gambar 2.2 merupakan penerapan dari FGSM. Terlihat gambar panda sebelah kiri merupakan data input asli yang belum dilakukan perubahan oleh FGSM. Gambar panda disebelah kanan diprediksi *gibbon* oleh model karena gambar tersebut sudah dilakukan perubahan dengan nilai *gradien loss* dengan nilai epsilon 0.007 tapi tidak terlihat perubahan ketika dilihat oleh manusia.

2.4 Random Noise

Random noise adalah gangguan yang ditambahkan secara acak ke dalam data. Random noise meniru ketidakpastian atau variasi alami yang terjadi secara alami (Pavlitskaya et al., 2022). Serangan random noise termasuk black-box

dikarenakan tidak memerlukan informasi model. *Noise* sering diterapkan di dalam banyak bidang, seperti pemrosesan citra, *machine learning*, *deep learning*, dan pelatihan model (Abdu-Aguye & Nandakumar, 2023). Berikut persamaan (6) perhitungan *random noise* menggunakan *Gaussian Noise* (Barkam et al., 2023).

$$N(\mu, \sigma^{2})$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right)}$$
(6)

Persamaan (6) merupakan perhitungan dari *random noise*. Pada perhitungannya terdapat parameter utama yaitu μ nilai rata rata dari distribusi normal (distribusi *gaussian*). Pada umumnya, mean ditetapkan 0, yang berarti *noise* tersebar simetris di sekitar nilai asli data. Standar deviasi (σ) untuk mengontrol besar sebaran *noise*.

2.5 Penelitian Terkait

Penelitian terkait melakukan berbagai pendekatan untuk melakukan serangan terhadap CNN. Beberapa penelitian tersebut menjadi landasan dalam melakukan penelitian ini. Penelitian terkait terdapat pada Tabel 2.1 yang dijadikan melandasi penelitian ini.

Tabel 2. 1 Penelitian Terkait

No	Penulis	Adversarial Attack	Pembahasan	
1	(Golgooni et al.,	FGD	Model DNN menggunakan data CIFAR-10	
	2023)		dilatih menggunakan FGSM sering terjadi	

No	Penulis	Adversarial Attack	Pembahasan
			overfitting, sehingga menurunnya akurasi
			model. Gradien input yang kecil memiliki
			tanda yang tidak stabil, memperparah
			overfitting. Oleh karena itu, solusi yang
			dilakukan adalah menggunakan metode
			Projected Gradient Descent (PGD) lebih
			dapat mengurangi overfitting karena model
			belajar dari data yang diserang secara iteratif,
			selain itu juga mengefisienkan komputasi.
2	(Yang et al.,	FGSM	Pemodelan DNN menggunakan dataset
	2022)		ImageNet dalam mengenali pola gambar.
			DNN memiliki kelemahan terhadap
			perturbasi kecil sehingga rentan dengan
			serangan. FGSM dapat mengeksplorasi
			kelemahan DNN dengan perubahan
			perubahan kecil, kemudian memberikan
			pelatihan terhadap model supaya dapat
			mengurangi kerentanan terhadap serangan.
3	(Attias, 2024)	Black-Box (BB)	CNN sensitif terhadap perubahan kecil pada
			input yang tidak terlihat dan dapat
			menyebabkan kesalahan prediksi.
			Regularizer dengan mengidentifikasi pixel

No	Penulis	Adversarial Attack	Pembahasan
			similarities dalam data gambar. Pendekatan
			regularizer lebih praktis untuk mencapai efek
			serupa. Black Box melakukan serangan
			dengan mengubah input perlahan sampai
			model melakukan salah prediksi.
			Peningkatan akurasi lebih tinggi ketika
			terapkan regularizer ketika mendapatkan
			serangan.
4	(Sen &	FGSM	Serangan adversarial FGSM dan Adversarial
	Dasgupta, 2023)		Patch mampu menurunkan kinerja model
			klasifikasi gambar secara signifikan, bahkan
			untuk model yang telah teruji keakuratannya
			seperti ResNet-34, GoogleNet, dan
			DenseNet-161. Hal ini menegaskan perlunya
			pengembangan model yang lebih tahan
			terhadap serangan atau penerapan
			mekanisme pertahanan yang efektif terhadap
			serangan adversarial.
5	(Tang & Zhang,	FGSM	Penelitian ini menguji efektivitas Test-Time
	2024)		Pixel-Level Adversarial (TPAP) pada DNN
			menggunakan dataset seperti CIFAR-10 dan
			ImageNet, termasuk FGSM. Keunggulan

No	Penulis	Adversarial Attack	Pembahasan		
			TPAP terletak pada kemampuannya		
			meningkatkan ketahanan terhadap serangan		
			yang tidak dikenal tanpa banyak akurasi pada		
			data bersih. Namun, metode ini memiliki		
			kekurangan, yaitu bergantung pada FGSM,		
			sehingga performanya terbatas terhadap		
			serangan dengan pola yang berbeda.		
6	(Waghela, 2024)	PGD	Penelitian ini menggabungkan pelatihan		
			adversarial dan teknik pra-pemrosesan		
			dengan noise acak untuk meningkatkan		
			ketahanan model ResNet terhadap serangan		
			PGD. Pendekatan ini fleksibel dan efektif,		
			namun membutuhkan komputasi tinggi dan		
			dapat menurunkan performa pada data non-		
			adversarial. Pengaturan noise acak harus		
			hati-hati untuk menjaga keseimbangan antara		
			robustitas dan akurasi.		
7	(Choi & Tian,	PGD	Pemodelan YOLO menggunakan dataset		
	2022)		KITTI dan COCO untuk menguji efektivitas		
			serangan dan pertahanan PGD. Serangan		
			yang diajukan terbukti lebih efektif (45,17%		
			pada KITTI dan 43,50% pada COCO)		

No	Penulis	Adversarial Attack	Pembahasan
			dibandingkan serangan tradisional. Sebagai
			solusi, pendekatan objectness-aware
			adversarial training diperkenalkan, yang
			berhasil meningkatkan robustitas detektor
			terhadap serangan sebesar 21% mAP di
			KITTI dan 12% mAP di COCO.
8	(Hirano et al.,	FGSM	Penelitian ini menguji tujuh arsitektur model
	2021)		DNN yang berbeda untuk melihat sejauh
			mana kerentanannya terhadap FGSM untuk
			klasifikasi kanker kulit, retinopati diabetik
			yang dapat dirujuk, dan pneumonia, baik
			yang tidak ditargetkan maupun yang
			ditargetkan, dan menemukan bahwa
			gangguan ini sangat efektif dalam
			mengklasifikasikan input secara salah,
			dengan tingkat keberhasilan lebih dari 80%
			untuk kedua jenis serangan tersebut.
9	(Wu et al., 2022)	Random Noise	Mode Neural Network mengurangi serangan
			yang mencoba mengubah hasil prediksi dan
			nilai perturbation. Model ini diuji
			menggunakan dataset CIFAR-10 dan
			serangan menggunakan random noise yang

No	Penulis	Adversarial Attack	Pembahasan
			dikombinasikan dengan PGD. Model dapat
			berhasil mencapai robust accuracy 89.62%.
			randomized smoothing dengan PGD, yang
			digunakan untuk membuat model lebih tahan
			terhadap gangguan. Hasilnya menunjukkan
			bahwa model yang diusulkan lebih baik
			daripada teknik randomized smoothing
			sekitar 5%, terutama ketika ada jari-jari
			radius yang lebih besar dari 0.5
10	(Lin et al., 2024)	Random Noise (RN)	Model VGG memanfaatkan jaringan
			adversarial generatif (GAN) untuk
			mengatasi tantangan dalam meningkatkan
			resolusi gambar seismik sekaligus
			mengurangi random noise . Ini sangat
			penting dalam pencitraan seismik, di mana
			metode tradisional sering sintetik ini
			membantu model untuk lebih generalisasi,
			meskipun hanya dilatih menggunakan data
			seismik sintetis. Serangan adversarial ini
			berusaha memanipulasi data input (gambar
			seismik) dengan menambahkan random
			noise atau gangguan yang tidak terlihat oleh

No	Penulis	Adversarial Attack	Pembahasan
			manusia, tetapi dapat mengacaukan model
			dan menyebabkan kesalahan dalam prediksi
			atau interpretasi. Model dirancang untuk
			lebih tahan terhadap serangan tersebut
			dengan menggunakan noise acak dalam
			pelatihan, yang membantu model menjadi
			lebih robust dan dapat menangani variasi dan
			ketidak sempurnaan data dunia nyata
11	Penelitian ini	FGSM+Random	Penelitian ini, menggunakan model CNN
		Noise	yang rentan terhadap serangan terutama pada
			perubahan. FGSM menggunakan random
			noise untuk adversarial attack terhadap CNN
			untuk menguji kerentanan model. FGSM
			melakukan serangan tidak hanya berdasarkan
			pada gradient loss tetapi dikombinasikan
			dengan random noise sehingga membuat
			noise secara acak untuk meningkatkan variasi
			serangan dalam menguji kerentanan CNN.
			Model dievaluasi untuk mengenali dari
			serangan FGSM yang dikombinasikan
			dengan random noise untuk mengurangi
			resiko serangan.

Pada tabel 2.1 menunjukan penelitian terkait sebagai acuan untuk penelitian ini. Adversarial attack terhadap model CNN telah diidentifikasi sebagai isu signifikan yang mempengaruhi ketahanan model terhadap perubahan kecil pada input. Beberapa penelitian mengungkapkan bahwa model CNN, seperti yang digunakan pada dataset CIFAR-10, ImageNet, dan dataset lainnya, sangat rentan terhadap perubahan kecil pada data input, yang dapat menyebabkan kesalahan prediksi dan penurunan akurasi (Yang et al., 2022). Salah satu pendekatan yang sering digunakan untuk melakukan serangan ini adalah menggunakan metode FGSM, dapat mengeksploitasi kerentanannya dengan membuat perubahan kecil pada data input (Sen & Dasgupta, 2023).

FGSM bekerja dengan menghitung *gradien* dari fungsi *loss* terhadap input, kemudian mengubah input berdasarkan arah *gradien* untuk menghasilkan data yang diserang, namun serangan ini seringkali menyebabkan *overfitting* pada model (Golgooni et al., 2023).

Penambahkan random noise acak dalam adversarial attack, FGSM dapat menyebabkan gangguan yang lebih beragam pada model CNN (Wu et al., 2022). Penelitian oleh (Wu et al., 2022) menunjukkan bahwa penggunaan random noise bersama dengan PGD menghasilkan akurasi yang lebih baik pada model yang dilatih untuk mengatasi gangguan tersebut dan nilai perturbation meningkat. Random noise ini membuat serangan lebih sulit diprediksi dan lebih beragam, sehingga menguji ketahanan model CNN dalam menghadapi variasi serangan yang

lebih luas (Lin et al., 2024). Oleh karena itu, kombinasi FGSM dengan *random noise* diharapkan dapat meningkatkan efektivitas serangan dan membantu dalam evaluasi ketahanan model CNN terhadap *adeversarial attack* yang lebih kompleks dan bervariasi. Perbandingan setiap penelitian dapat dianalisis melalui matriks penelitian yang disajikan pada Tabel 2.2.

Tabel 2. 2 Matriks Penelitian

		Adversarial Attack				
No	Penulis	FGSM	PGD	Random Noise	Black-Box	Neural Network
1	(Golgooni et al., 2023)		V			DNN
2	(Yang et al., 2022)	$\sqrt{}$				DNN
3	(Attias, 2024)				$\sqrt{}$	CNN.
4	(Sen & Dasgupta, 2023)	V				DenseNet
5	(Tang & Zhang, 2024)	V				DNN
6	(Waghela, 2024)		√			ResNet
7	(Choi & Tian, 2022)		√			YOLO
8	(Hirano et al., 2021)	√				DNN.
9	(Wu et al., 2022)		V	V		Neural Network
10	(Lin et al., 2024)			V		VGG
11	Penelitian ini	V		V		CNN

Pada tabel 2.2, matriks penelitian menyoroti perbedaan antara penelitian ini, dengan penelitian lainnya. Peluang penelitian ini, dengan mengembangkan metode FGSM yang menggunakan *gradien loss* untuk menghasilkan serangan pada model. Dalam pendekatan ini, FGSM dimodifikasi dengan menambahkan elemen *random noise*, yang bertujuan untuk meningkatkan variasi dalam serangan terhadap model CNN. Memasukkan komponen *random noise*, serangan yang dilakukan tidak hanya

berdasarkan pada *gradien loss*, tetapi juga menciptakan serangan yang lebih kompleks. Hal ini memberikan tantangan baru bagi model CNN, karena serangan yang dihasilkan lebih beragam, sehingga dapat membantu untuk menguji ketahanan dan kemampuan model dalam menghadapi gangguan yang lebih variatif.