
2021 International Conference Advancement in Data
Science, E-learning and Information Systems (ICADEIS)

978-1-6654-3709-7

978-1-6654-3709-7/21/$31.00 ©2021 IEEE

JSON Web Token Penetration Testing
on Cookie Storage with CSRF Techniques

Irfan Darmawan

Department of Information System

Telkom University

Bandung, Indonesia
irfandarmawan@telkomuniversity.ac.id

Rohmat Gunawan

Departement of Informatics

Siliwangi University

Tasikmalaya, Indonesia
rohmatgunawan@unsil.ac.id

Aditya Pratama Abdul Karim
Departement of Informatics

Siliwangi University

Tasikmalaya, Indonesia
aditya1995.jr@gmail.com

Dita Pramesti

Department of Information System

Telkom University

Bandung, Indonesia
ditapramesti@telkomuniversity.ac.id

Alam Rahmatulloh

Departement of Informatics

Siliwangi University

Tasikmalaya, Indonesia
alam@unsil.ac.id

Abstract—An authentication process is an act of proving the

identity of a user when entering a system. Token-based
authentication is a type of authentication that is stateless. This
means that when the authentication process is carried out, there
is absolutely no information about the user because the use of
tokens in every request is made from the client to the server.
Java Script Object Notation (JSON) Web Token is an
authentication technique that provides an open and secure way
to represent claims between two parties, cryptographically
signed, which is designed not to be forged. However, this needs
to be proven safe and not vulnerable. The purpose of this study
is to conduct penetration testing of the security of JSON Web
Token (JWT) storage on cookie storage using CSRF techniques.
Scenarios for performing the CSRF technique were prepared in
the experiment. The system architecture and tools to be used
are prepared before the experiment is carried out. The
experimental results in this study show that the part of the
cookie attribute that embeds the flag "set-httponly: false", can
be accessed by javascript on the client-side (read and write).
The CSRF technique that was tried in the research has
succeeded in utilizing JWT tokens stored in cookies to send
faked requests. Eventually, the victim's account was used, and
the resource was taken over.

Keywords—CSRF, JWT, Penetration Testing

I. INTRODUCTION

The World Wide Web has changed people's lives very
drastically. Large individuals and organizations use the Web
every day. Web applications such as personal websites,
discussion forums, e-commerce applications are an important
thing which is spread all over the world [1]. Most of the
infrastructure, such as banks, stock market, health, education,
transportation, communications, defense, all use web
applications [2]. The increasing dependence on web
applications, the variety of services provided, and the ever-
increasing amount of data sparked attackers' interest in these
systems [3]. Data stored in a computer system must be
proven safe and not vulnerable. One way to do this is called
penetration testing [4]. In penetration testing, the tester
simulates the activity of a malicious attacker who tries to
exploit a target system's vulnerability [5].

When using web-based applications such as e-commerce
or e-learning, users usually need to have an account first.
Account information is very important and confidential,
usually used when accessing a service. Account
authentication needs to be done to verify real or fake users

[6]. Common authentication techniques used in web
applications include session-based authentication and token-
based authentication [6]. Session-based authentication was
invented earlier and is an outdated method that almost every
site uses. Meanwhile, the token-based authentication method
is stateless, having absolutely no information about the user
because the use of tokens in every request is made from the
client to the server.

Token-based authentication, allowing the user to verify
their identity, and in return, receive a unique access token
[7], [8]. During the lifetime of the token, users can access the
website or application where the token is issued. This
method is more concise than having to re-enter credentials
every time you return to the same web page, any application
or resource that is protected by the same token. The user
maintains access as long as the token remains valid. After the
user logs out or exits the application, the token becomes
invalid. Token-based authentication differs from traditional
password-based or server-based authentication techniques.
The token offers a second layer of security, and
administrators have detailed control over every action and
transaction [9]. Token-based authentication shows better
performance than session-based methods [6], because in
token-based authentication, no session is created every time a
user logs in but only the time between login and logout. New
trends in token-based authentication include using JSON
Web Tokens (JWT). JWT is a JSON-based credential that
provides an open and secure way to represent claims
between two parties [10], cryptographically signed design
not to be counterfeited [11].

Several studies related to JWT have been conducted
before, including Token-based authentication using JSON
Web Token in RESTful Web applications [12], Performance
comparison of signed algorithms on JSON Web Token [13].
However, in this study, the location of the token has not been
discussed, and the JWT token has not been tested for security
to determine its characteristics in facing various kinds of
threats.

Several studies related to penetration testing have been
carried out before, including Exploiting web application
vulnerabilities with Cross Site Scripting (XSS) and Cross
Site Request Forgery (CSRF) techniques [2] [3], Security
testing methodology for XSS vulnerability detection in web
services [14], presentation of statistical results and security
consolidation of various web applications against Cross Site

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

A
dv

an
ce

m
en

t i
n

D
at

a
Sc

ie
nc

e,
 E

-le
ar

ni
ng

 a
nd

 In
fo

rm
at

io
n

Sy
st

em
s (

IC
A

D
EI

S)
 |

97
8-

1-
66

54
-3

70
9-

7/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

A
D

EI
S5

25
21

.2
02

1.
97

01
96

5

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:39:19 UTC from IEEE Xplore. Restrictions apply.

Request Forgery (CSRF) attacks [15]. JWT storage methods
commonly used in web-based applications are HTML5 Web
Storage (Session storage, Local storage) and Cookie Storage.
Token storage on Cookies has vulnerability to Cross Site
Request Forgery (CRSF) attacks[16]. The purpose of this
study is to perform penetration testing of the security of JWT
token storage in cookie storage using CSRF techniques.

II. RELATED WORK

Research [2], [3], trying to do penetration testing on web

applications with the XSS and CRSF techniques. Support
tools and scenarios are prepared to conduct penetration
testing experiments. XSS and CSRF attacks are implemented
by manipulating the connection between the user and the
server, further tricking the user and server into running
unauthorized scripts. His research has successfully used
scripts to exploit security holes with XSS and CRSF
techniques in web applications.

On research [14], attempts to attack XSS techniques to
exploit a vulnerability in a web service. The approach taken
uses two Security Testing techniques, namely Penetration
Testing and Fault Injection, to mimic XSS attacks on Web
Services in combination with WS-Security (WSS) and
Security Tokens so as to identify senders and ensure
legitimate access control to SOAP messages.
Interchangeable. The soapUI and WSInject vulnerability
scanners are a new error injection tool that introduces errors
or errors in Web Services to analyze behavior in
environments that are not robustly used in an experiment.
The results show that the use of WSInject, compared to
soapUI, improves vulnerability detection allowing it to
emulate XSS attacks and generate new types.

Other research [15], tries to present statistical and
consolidated results received in security studies of various
web applications against cross-site request forgery attacks.
The results of the consolidation of information about attacks
and protection measures currently used by web application
developers are presented, as well as showing the different
types of distribution: distribution of identified vulnerabilities
according to developer type, distribution of security
measures used in web applications, distribution of identified
vulnerabilities according to language programmed, studied
data about the number of security measures used in web
applications. The results show that in many cases web
application developers do not pay attention to protection
against cross-site request forgery attacks.

Penetration testing with the CSRF technique on the
JSON Web Token is the main focus of this research. JWT
tokens are stored on cookies. Script prepared to run on an
experiment to be performed. The system architecture is
designed, and several tools are prepared to support the
experiment. In the final stage, an analysis of the results of the
experiment was carried out and concluded.

III. EXPERIMENTAL DESIGN

There are four stages in this study, namely: Determining

the system requirements, Installation and Configuration
Tools, Penetration Testing with CSRF Technique, Analysis
of experimental results.

1. Determining System requirements

At this stage, they technically defined the flow of
experiments, in general, to be carried out. The stages of
penetration testing using the CSRF technique are generally
shown in Fig. 1.

User

Server

(1) Credential (username + password)

(2) Verified, generated token

Attacker

Web

Browser

Fig. 1. The flow of penetration testing with the CSRF

Fig. 1. displays an overview of 6 sequences of activities

carried out in the penetration process with CSRF techniques.
There are three main entities involved, namely: User, Server,
Attacker. The activity begins with inputting the username
and password by the user via a web browser. The web
browser will make a request to the server. In the second
stage, the server verifies and generates a token, then sends a
response to the client. In the third stage, the user tries to
change the password. In the fourth stage, requests sent from
the client to the server are intercepted and manipulated by
the attacker. Manipulated requests are then sent to the server
by the attacker.

In the fifth stage, the server verifies the request because
the data received is valid, even though it has actually been
faked by the attacker. In the sixth stage, the attacker manages
to take over the user account. In order for each stage of
penetration testing activities with the CSRF technique, as
shown in Fig 1, several tools are required that must be
provided. In general, the tools that must be prepared are
shown in table 1.

TABEL 1. SYSTEM REQUIREMENT

No Item Description Version

1. Kali Linux Operating System 2020.3

2. Ubuntu server Operating System 20.04.1

3. Burp Suite Testing Tool 2020.9.1

4. Hashcat Password recovery 6.1.1

5. OWASP Juice Shop Vulnerable Web Application 12.1.1

6. OWASP Web Goat Vulnerable Web Application 8.1.0

7. FoxyProxy
Standard

Web browser extension
proxy

7.4.3

8. Docker Container Operating System for
container

19.03.13

9. Virtual Box Virtual Machine 6.1.12

2. Installation and Configuration Tools

At this stage, supporting tools are installed to run web
applications such as docker containers and support
applications for penetration and exploitation such as
Burpsuite and hashcat. As well as configuring a proxy on a
web browser and burpsuite.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:39:19 UTC from IEEE Xplore. Restrictions apply.

3. Penetration Testing with CSRF Technique

At this stage, the web application is tested using the
CSRF technique.

4. Analysis of experimental results

At this stage, analysis, and drawing conclusions are
carried out on the results of the penetration testing
experiments that have been carried out.

IV. RESULT AND ANALYSIS

The system architecture used in the experiment in this

study runs on a virtual machine. In general, the system
architecture developed is shown in Fig. 2.

Windows 10

Web Server

Client

Man In The

Middle Attack

(Kali Linux)

192.168.1.103

Virtual Machine

Original Connection

New Connection

X

Ubuntu

192.168.1.104

192.168.1.102

Fig. 2. System Architecture

1. Installing Docker Container

At this stage, the docker container installation is carried
out from the packages that are already available in the Linux
repository. Docker functions as a server library. Docker

installation is done with the command sudo apt-get

install docker.io.

2. Installing OWASP Juice Shop

This stage is the download process from github

bkimminich / juice-shop; with the command sudo docker
pull bkiminich/juice-shop.

3. Installing Hascat

In order for the hashcat installation to be carried out, it is
necessary to update the repository on Linux by running the

command sudo apt-get install hashcat.

4. Configuration Tool

This is done with a proxy configuration on Burp, and
this is useful for receiving HTTP requests from a web
browser. Fig. 3 shows a proxy listener with the default IP
along with port 8087 has been added.

Fig. 3. Configure Burp Proxy

5. Cross Site Request Forgery (CSRF) Penetration Testing

All user login information that has been loaded in the
JWT token is stored on browser cookies. However, it can be
seen in Fig. 4, the part of the cookie attribute that becomes a
weakness is to embed the flag "set-HTPponly: false", which
means that cookies can be accessed by javascript on the
client-side (read and write).

Fig. 4. JWT Information on Cookies

At this stage, the intercepted GET request parameter is

displayed when the client updates the password. Fig. 5.
shows the request sent to the server, including a valid API
token, so the server responds with a success status.

Fig. 5. Intercept GET request

The real user unknowingly sent an HTTP request that

the attacker forged; the server responds with "200 OK"
status that means the server correctly validates the fake
request that has been sent, which can be seen in Fig. 6. The
server cannot identify the forgery because the request was
made by the user, which is authenticated and sends all
necessary data.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:39:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Request Manipulation

The CSRF attack has been successfully carried out, and

the attacker can log in with the manipulated password as
shown in Fig. 7.

Fig.7. Login with a new password

6. Analysis of test results

Penetration testing using the CSRF technique has been
successfully carried out by forging requests from real users
who cannot be identified by the server so that the server
validates and responds correctly because it considers the
fake request to come from a legitimate, trusted, and
authenticated user. The attacker managed to take over
access to the victim's account.

V. CONCLUSION

JWT penetration testing has been successfully carried

out with the CSRF technique so that the victim's account
can be controlled and resources can be taken over. JWT
token has become a good security standard for user
authentication and authorization, but there is a vulnerability
if it is stored in cookies. Web application developers have to
do more coding. One of them is by implementing JWT on
the HttpOnly cookie, which is a special type of cookie that
is sent in an HTTP request to the server and can never be
accessed from javascript running in the browser.

REFERENCES

[1] R. Kannan and G. Umasankar, “Secure External

Login Based on Authorization Code Flow using
JWT,” pp. 961–965, 2018.

[2] S. Rawat, T. Bhatia, and E. Chopra, “Web
Application Vulnerability Exploitation using
Penetration Testing scripts,” Int. J. Sci. Res. Eng.

Trends, vol. 6, no. 1, pp. 311–317, 2020.

[3] T. Farah, M. Shojol, M. Hassan, and D. Alam,
“Assessment of vulnerabilities of web applications
of Bangladesh: A case study of XSS & CSRF,”
2016 6th Int. Conf. Digit. Inf. Commun. Technol. Its

Appl. DICTAP 2016, pp. 74–78, 2016, doi:
10.1109/DICTAP.2016.7544004.

[4] F. Holik, J. Horalek, O. Marik, S. Neradova, and S.
Zitta, “Effective penetration testing with Metasploit
framework and methodologies,” CINTI 2014 - 15th

IEEE Int. Symp. Comput. Intell. Informatics, Proc.,
pp. 237–242, 2014, doi:
10.1109/CINTI.2014.7028682.

[5] S. Shah and B. M. Mehtre, “An overview of
vulnerability assessment and penetration testing
techniques,” J. Comput. Virol. Hacking Tech., vol.
11, no. 1, pp. 27–49, 2015, doi: 10.1007/s11416-
014-0231-x.

[6] Y. Balaj, “Token-Based vs Session-Based
Authentication : A survey,” no. September, pp. 1–6,
2017.

[7] A. Bhawiyuga, M. Data, and A. Warda,
“Architectural design of token based authentication
of MQTT protocol in constrained IoT device,”
Proceeding 2017 11th Int. Conf. Telecommun. Syst.

Serv. Appl. TSSA 2017, vol. 2018-Janua, pp. 1–4,
2018, doi: 10.1109/TSSA.2017.8272933.

[8] O. Ethelbert, F. F. Moghaddam, P. Wieder, and R.
Yahyapour, “A JSON token-based authentication
and access management schema for cloud SaaS
applications,” Proc. - 2017 IEEE 5th Int. Conf.

Futur. Internet Things Cloud, FiCloud 2017, vol.
2017-Janua, pp. 47–53, 2017, doi:
10.1109/FiCloud.2017.29.

[9] G. Kbar, “Challenge Token-based Authentication –
CTA,” no. c, pp. 294–300, 2011.

[10] L. V. Jánoky, J. Levendovszky, and P. Ekler, “An
analysis on the revoking mechanisms for JSON
Web Tokens,” Int. J. Distrib. Sens. Networks, vol.
14, no. 9, 2018, doi: 10.1177/1550147718801535.

[11] S. Calzavara, A. Rabitti, and M. Bugliesi, “Dr
Cookie and Mr Token - Web session
implementations and how to live with them,” CEUR

Workshop Proc., vol. 2058, 2018.

[12] M. Haekal and Eliyani, “Token-based authentication
using JSON Web Token on SIKASIR RESTful Web
Service,” 2016 Int. Conf. Informatics Comput. ICIC

2016, no. Icic, pp. 175–179, 2017, doi:
10.1109/IAC.2016.7905711.

[13] A. Rahmatulloh, R. Gunawan, and F. M. S.
Nursuwars, “ Performance comparison of signed
algorithms on JSON Web Token ,” IOP Conf. Ser.

Mater. Sci. Eng., vol. 550, p. 012023, 2019, doi:
10.1088/1757-899x/550/1/012023.

[14] M. I. P. Salas and E. Martins, “Security testing
methodology for vulnerabilities detection of XSS in
web services and WS-security,” Electron. Notes

Theor. Comput. Sci., vol. 302, pp. 133–154, 2014,
doi: 10.1016/j.entcs.2014.01.024.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:39:19 UTC from IEEE Xplore. Restrictions apply.

[15] A. V. Barabanov, A. S. Markov, and V. L. Tsirlov,
“Information Security Controls against Cross-Site
Request Forgery Attacks on Software Applications
of Automated Systems,” J. Phys. Conf. Ser., vol.

1015, no. 4, 2018, doi: 10.1088/1742-
6596/1015/4/042034.

[16] C. K. Ho, “Descriptive Research for JWT
Implementation as Session Data,” no. March, pp. 1–
9, 2018.

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on February 10,2022 at 12:39:19 UTC from IEEE Xplore. Restrictions apply.

