BAB 3

METODE PENELITIAN

3.1 Lokasi Penelitian

Lokasi penelitian dalam penelitian ini adalah di Jalan A.H Nasution, Kecamatan Mangkubumi, Kota Tasikmalaya, Provinsi Jawa Barat. Lokasi penelitian tersebut dipilih karena Jalan A.H Nasution merupakan jalan utama, dimana arus kendaraan yang melewati jalan tersebut terbilang cukup padat. Titik banjir pada saluran SPBU Mangkubumi. Peta lokasi dapat dilihat pada Gambar 3.1

Gambar 3.1 Lokasi Penelitian

3.2 Teknik Pengumpulan Data

Data-data yang dibutuhkan untuk penelitian ini diantaranya :

3.2.1 Data Primer

Data primer merupakan data yang diperoleh secara langsung di lapangan oleh peneliti sebagai objek penelitian. Data primer yang dibutuhkan dalam penelitian ini mencakup konidisi eksisting, elevasi dan dimensi saluran drainase serta luas daerah tangkapan air untuk kemudian dilakukan analisis debit limpasan yang terjadi.

3.2.2 Data Sekunder

Data sekunder merupakan data yang diperoleh dari acuan dan literatur yang berhubungan dengan materi, jurnal atau karya tulis ilmiah yang berhubungan dengan penelitian atau dengan mendatangi instansi untuk memperoleh data-data pendukung yag diperlukan. Data sekunder yang diperlukan untuk penelitian ini diantaranya :

1. Data DEM (*Digital Elevation Model*)

Data DEM ini digunakan untuk membuat peta topografi dan *stream flow* yang nantinya akan digunakan untuk menentukan daerah tangkapan air (DTA) pada lokasi penelitian.

2. Data Curah Hujan

Data curah hujan yang digunakan merupakan data yang didapat dari stasiun hujan terdekat dengan daerah tangkapan air, diantaranya stasiun hujan Wiriadinata, stasiun hujan Cimulu dan Stasiun hujan Kawalu selama 20 tahun.

3. Peta Topografi

Peta dibutuhkan dalam menentukan arah aliran air (*streamflow*) dan elevasi pada lokasi penelitian sehingga dapat dibentuk daerah tangkapan air.

4. Peta Jaringan Drainase Lokasi Tersebut

Jaringan saluran berperan besar dalam mempengaruhi debit puncak dan lama berlangsungnya debit puncak tersebut. Peta jaringan drainase yang sudah ada kemudian dibandingkan dengan hasil survey langsung di lapangan.

3.3 Alat dan Bahan

Penelitian pada saluran drainase di JL. A.H Nasution ada beberapa alat dan bahan yang digunakan untuk menunjang proses penelitian diantaranya :

No	Nama Alat dan Bahan	Kegunaan
1	Theodolite	Mengukur ketinggian dilokasi penelitian
2	Gps	Menunjukan lokasi-lokasi yang disurvei
3	Rambu ukur	Mengukur beda tinggi antara garis bidik
		dengan permukaan tanah
4	Tripod	Dudukan waterpass agar berdiri dengan stabil
5	Kamera	Dokumentasi selama survey
6	Meteran	Mengukur dimensi saluran
7	Laptop	Penunjang proses penelitian
8	Aplikasi Arcgis	Membantu untuk proses analisis
9	Aplikasi SWMM 5.1	Mensimulasikan hasil penelitian
10	Google Earth	Mengaplikasikan data lapangan

Tabel 3.1 Alat dan Bahan Penelitian

3.4 Analisis Data

3.5 Penentuan Catchment Area

Catchment Area ditentukan dengan bantuan *software* Arcgis seperti dijelaskan dalam tinjauan pustaka untuk mengetahui luas *Catchment area* di lokasi penelitian. Tahapan-tahapan penentuan catchment area disajikan dalam *flowchart* Gambar 3.2.

3.5.1 Analisis Hidrologi

Analisis hidrologi dilakukan guna untuk mendapatkan besarnya curah hujan rencana pada periode ulang hujan tertentu. Periode ulang yang digunakan dalam penelitian ini yaitu periode ulang 2 tahun, 5 tahun, 10 tahun, 25 tahun dan 50 tahun. Curah hujan rencana didapatkan dengan perhitungan curah hujan kawasan, analisis frekuensi dan uji sebaran (Juliyanti, 2020).

Gambar 3.3 Flowchart Analisis Hidrologi

3.5.2 Analisis Debit Banjir Rencana

Metode rasional ini adalah metode yang digunakan dalam perhitungan debit banjir rencana dimana harus diketahui nilai koefisien limpasan, luas wilayah serta intensitas hujan yang dipengaruhi oleh waktu konsentrasi. Koefisien limpasan pada *catchment area* ditentukan dengan menganalisis tata guna lahan kemudian diambil nilai rata-ratanya. Sedangkan waktu konsentrasi adalah waktu mengalirnya air dari titik terjauh sampai titik yang akan ditinjau. Tahap-tahap dalam perhitungan debit banjir rencana disajikan pada gambar di bawah ini.

Gambar 3.4 Perhitungan Debit Banjir Rencana

3.5.3 Analisis Kapasitas Saluran Drainase

Analisis kapasitas saluran drainase dilakukan dengan 2 metode yaitu analisis dengan perhitungan manual dan pemodelan dengan aplikasi EPA SWMM 5.1. Hasil dari kedua metode ini selanjutnya dibandingkan untuk menentukan alternatif penanganan banjir.

3.5.3.1 Analisis Kapasitas

Analisis hidrolika dilakukan untuk mengetahui apakah kapasitas saluran eksisting lebih besar atau lebih kecil dari debit banjir rencana. Rumus yang digunakan dalam analisis kapasitas saluran adalah rumus *Manning* dengan data yang dibutuhkan merupakan data fisik seperti dimensi saluran, kekasaran saluran dan kemiringan. Nilai debit banjir rencana dan debit saluran eksisting kemudian dibandingkan. Jika nilai debit saluran eksisting lebih kecil dari debit banjir rencana, maka dapat diketahui dimensi saluran tidak dapat menampung debit limpasan yang terjadi.

Gambar 3.5 Flowchart Analisis Hidrolika

3.5.3.2 Mensimulasikan Daerah Tangkapan Air

Analisis dengan *software* EPA SWMM 5.1 membantu dalam melakukan analisis kapasitas penampang saluran dalam menampung debit hujan dengan periode ulang tertentu. Simulasi ini dilakukan untuk menemukan solusi yang tepat untuk pemecahan masalah yang terjadi di lokasi penelitian. Tahapan-tahapan simulasi menggunakan EPA SWMM 5.1 disajikan dalam *flowchart* Gambar 3.6 berikut :

Gambar 3.6 Flowchart Analisis Banjir dengan EPA SWMM 5.1

a. Input Backdrop

Langkah awal dalam pemodelan dengan SWMM adalah membuka aplikasi. Kemudian *Backdrop* di *input* dengan memasukkan data gambar objek lokasi penelitian pada menu *view (backdrop)*. Kemudian masukkan koordinat agar *backdrop* sesuai. Pemodelan EPA SWMM disederhanakan dengan skema jaringan, terlihat pada Gambar 3.8 berikut.

Gambar 3.7 Tampilan Backdrop

Gambar 3.8 Tampilan *Backdrop* disederhanakan dengan Skema Jaringan

b. Menentukan Subcatchment

Pembagian subcatchment merupakan langkah awal dalam penggunaan SWMM. Pembagian tersebut sesuai dengan daerah tangkapan air (DTA) yang

ditentukan berdasarkan pada elevasi lahan dan pergerakan limpasan ketika terjadi hujan. Data yang dimasukkan berupa luas area, persentase limpasan, persentase kemiringan, lebar *subcatchment* dan titik pembuang. Berdasarkan peta topografi dan arah aliran air (*Run-off*) menuju saluran, pada lokasi penelitian ini pembagian *subcatchment* menjadi 59, dimana 37 *subcatchment* pada lahan dan 22 *subcatchment* pada jalan. Data yang dimasukan luas dan lebar lahan dibantu dengan *software* ArcGis, persentase kemiringan dari kontur Kota Tasikmalaya dan *Impervious* lahan. Berikut data parameter tiap *subcatchment*.

No	Nama Subaatahmant	Outfall	Α	Width	Slope	Impervious
INO	Nama Subcatchment	Ouijali	(ha)	(m)	(%)	(%)
1	SAH1	J1	0,26163	74,88	4	40
2	SAH2	J2	0,08198	30,72	3	40
3	SAH3	J3	0,45316	126,32	3	60
4	SAH4	J4	0,35851	51,43	2	75
5	SAH5	J6	0,21174	67,54	0,3	40
6	SAH6	J7	0,28979	83,12	2	40
7	SAH8	J9	0,25519	111,3	6	75
8	SAH9	J28	0,11636	28,6	10	40
9	SAH10	J24	0,12035	23,68	8	40
10	SAH11	J12	2,05528	218,27	4	75
11	SAH12	J14	0,04535	10,45	10	40
12	SAH13	J15	0,05699	9,72	2	100
13	SAH14	J16	0,83584	134,81	5	40
14	SAN1	J18	0,26386	40,55	0,5	60
15	SAN2	J20	0,16178	16,78	1	75
16	SAN3	J22	0,0499	17,85	1	75
17	SAN4	J17	0,12122	18,11	1	60
18	SAB1	J25	0,70211	136,77	4	75
19	SAB2	J27	0,96588	180,21	4	75
20	SMB1	J29	0,20881	54,54	2	75
21	SMB2	J31	0,21751	55,9	7	75
22	DTA1	J32	29,581	822,7	2	50
23	DTA2	J32	1,68447	80,57	10	40
24	DTA3	J33	2,84759	139,64	4	75

Tabel 3.1 Pembagian Subcatchment

No	Nama Subaatahmant	Outfall	Α	Width	Slope	Impervious
INU	Ivallia Subcatchillent	Ouijuii	(ha)	(m)	(%)	(%)
25	DTA4	J34	8,91545	456,59	1	75
26	DTA5	J34	3,59286	287,28	4	75
27	DTA6	J35	1,31665	291,65	3	40
28	DTA7	J35	0,66136	162,91	1	75
29	DTA8	J36	4,08145	312,1	4	75
30	DTA9	J38	0,16874	60,87	3	40
31	DTA10	J5	0,03331	8,62	2	40
32	DTA11	J5	0,9903	208,61	1	0
33	DTA12	J39	0,31595	73,2	3	0
34	DTA13	J40	0,68946	51,8	2	0
35	DTA14	J40	0,70669	105,2	2	0
36	DTA15	J41	0,54178	44,94	0,4	0
37	DTA16	OUT1	12,4568	640,24	1	0
38	SAHJ1	J1	0,01483	4	2	100
39	SAHJ2	J2	0,01929	4	2	100
40	SAHJ3	J3	0,03465	4	2	100
41	SAHJ4	J4	0,03197	4	2	100
42	SAHJ5	J6	0,01361	4	2	100
43	SAHJ6	J7	0,02481	4	2	100
44	SAHJ7	J8	0,02768	4	2	100
45	SAHJ8	J9	0,01446	4	2	100
46	SAHJ9	J10	0,02478	4	2	100
47	SAHJ10	J11	0,0406	4	2	100
48	SAHJ11	J12	0,03647	4	2	100
49	SAHJ12	J14	0,01346	4	2	100
50	SAHJ13	J15	0,02138	4	2	100
51	SAHJ14	J16	0,02919	4	2	100
52	SANJ1	J18	0,06284	6	2	100
53	SANJ2	J20	0,07037	6	2	100
54	SANJ3	J22	0,02033	6	2	100
55	SANJ4	J17	0,04369	6	2	100
56	SABJ1	J25	0,02095	3	2	100
57	SABJ2	J27	0,02341	3	2	100
58	SMBJ1	J29	0,02231	3,5	2	100
59	SMBJ2	J31	0,02832	3,5	2	100

Property Value Name SAH1 X-Coordinate 11468 Y-Coordinate 2391.9 Description 7 Tag 8 Rain Gage R1 Outlet J1	.158 197	^	Dstore-Perv %Zero-Imperv Subarea Routing Percent Routed	0.05 25 OUTLET 100	
NameSAH1X-Coordinate11468Y-Coordinate2391.9Description7Tag7Rain GageR1OutletJ1	.158 197		%Zero-Imperv Subarea Routing Percent Routed	25 OUTLET 100	
X-Coordinate 11468 Y-Coordinate 2391.9 Description 7 Tag Rain Gage R1 Outlet J1	.158 197		Subarea Routing	25 OUTLET 100	
Y-Coordinate 2391.9 Description Tag Rain Gage R1 Outlet J1	197		Subarea Routing Percent Routed	OUTLET 100	
Description Tag Rain Gage R1 Outlet J1			Percent Routed	100	
Tag Rain Gage R1 Outlet J1			LaChastian Data		
Rain Gage R1 Outlet J1			/ Inflitration Data	HORTON	
Outlet J1			Groundwater	NO	
			Snow Pack		
Area 0.0261	102		LID Controls	0	
Width 74.6			Land Uses	0	
% Slope 0.8			Initial Buildup	NONE	
% Imperv 40		ĺ	Curb Length	0	
N-Imperv 0.024			N-Perv Pattern		
N-Perv 0.1			Detava Dattara		
Dstore-Imperv 0.05					
Dstore-Perv 0.05			Infil. Pattern		
%Zero-Imperv 25			Optional monthly pattern that adjusts infiltration rate		

Gambar 3.9 Tampilan data pada *Subcatchment*

c. Pemodelan Jaringan Drainase

Pemodelan didasarkan pada jaringan drainase yang ada dilapangan. Lalu objek yang dimasukkan berupa *junction* adalah data elevasi.

Gambar 3.10 Tampilan Data Junction

Data yang dimasukkan pada *conduit* adalah dimensi saluran, betuk saluran, panjang saluran dan koefisien kekasaran.

Gambar 3.11 Tampilan Data Conduit

Data curah hujan yang telah diolah menjadi intensitas hujan jam-jaman,

diinputkan sebagai rain gage pada time series.

Gambar 3.12 Tampilan Data Rain Gage pada Time Series

Gambar 3.13 Tampilan Model Jaringan Drainase

d. Pemodelan Aliran pada Saluran Drainase (*Running Simulation*)

Setelah semua data dimasukkan, maka pemodelan dapat dilakukan dengan menjalankan simulasi (*running*). Simulasi dapat dikatakan berhasil jika *continuity error* < 10%. Aliran permukaan atau limpasan terjadi ketika intensitas hujan

melebihi kapasitas *infiltrasi*. Hasil simulasi dapat dilihat dari status *report*, menggunakan map, menggunakan grafik maupun menggunakan profil aliran.

a. *Status Report* berisikan rangkuman informasi (*Summary Result*) yang berguna mengenai hasil simulasi diantaranya kualitas simulasi, total hujan yang ter*infiltrasi* dan melimpas, node-node yang terjadi banjir serta waktu terjadinya banjir;

SWMM 5.1 - TA_1770110	776_UINA_L2.inp Report Tools Window Help	- 0	×
D 📽 🖬 🚳 🖪 🗛	ΛΊ⊕ β ≣ዿ፼፼ዾΣ ጬቘ ▶∟⊂ѻዺ⌒其≜ ♀፼о⊽◊घ⊢┌፼⋴፼т		
Project Map	E Status Report		×
Title/Notes Options Options Climatology Hydrology Hydraulics Quality Curves Time Series Time Series Map Labels	EPA STORM WAITER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) 		Ŷ
	Note: The nummary statistics displayed in this report are based on results found at every computational time step.		l
+ - 4 ↔ ₹	Analysis Options Flow Entits		
INFLOW PUH2TH PUH5TH PUH10TH PUH25TH PUH50TH	Houndwater NO Flow Routing TES Ponsing Allowed NO Water Quilty NO Inflictation Method BORTON Flow Routing Method BORTON Flow Routing Method IO/24/2021 00:00:00 Forting name IO/24/2021 00:00:00		
Auto-Length: Off V Off	Antecedent Drv Dava		>
🛨 🔎 Type here t	o search 🖾 🛤 🛂 🚱 📾 25°C Badai Petir 🔨 📠 😁	(小) ==== ENG 20:20 09/11/20	21 🖵

Gambar 3.14 Tampilan Hasil Simulasi dari Status Report

b. Simulasi pada map

Tingkatan luapan pada saat simulasi berbeda-beda tergantung pada warna yang muncul setelah dilakukan *run*. Jika warna biru sampai hijau, berarti saluran masih aman dan tidak terjadi luapan. Sedangkan jika simulasi berwarna kuning sampai merah, berarti terjadi luapan dan banjir pada saluran;

Gambar 3.15 Tampilan Hasil Simulasi pada Skema Jaringan Drainase

c. Pengguanaan grafik sangat membantu pemakai memahami hasil simulasi suatu/beberapa objek secara utuh dalam keseluruhan waktu simulasi yang diterapkan. Grafik aliran bisa menunjukkan bahwa pada beberapa jam, aliran pada suatu saluran telah mencapai kapasitas maksimum yang ditunjukkan oleh grafik yang mendatar dan konstan. Hal ini mengindikasikan bahwa pada jam-jam tersebut, kapasitas saluran telah terlampaui sehingga terjadi luapan;

Gambar 3.16 Tampilan Hasil Simulasi menggunakan Grafik

d. Profil aliran (profil plot) menunjukkan perubahan kedalaman aliran dalam potongan memanjang saluran dan juga luapan yang terjadi pada saluran.

Gambar 3.17 Tampilan Hasil Simulasi menggunakan Profil Aliran

3.5.4 Pemodelan Alternatif Penanganan Banjir

Pemodelan alternatif penanganan banjir dapat dilakukan jika penyebab terjadinya banjir sudah diketahui. Ada beberapa alternatif yang dapat diambil diantaranya normalisasi saluran drainase dan permukaan *inlet*, redesain dimensi saluran drainase terutama untuk saluran pembuang yang tidak dapat menampung aliran air saat terjadi hujan dengan intensitas tinggi, pembuatan kolam retensi maupun pembuatan stasiun pompa. Pada penelitian ini, solusi yang akan digunakan adalah normalisasi dan redesain saluran juga pembuatan kolam retensi yang disimulasikan dengan aplikasi EPA SWMM 5.1 dengan langkah-langkah seperti pada gambar 3.19.

Gambar 3.18 Flowchart Analisis Data