DAFTAR GAMBAR

Gambar 2.1	Peta Potensi Tenaga Surya	8	
Gambar 2.2	Skema Sistem On-Grid	<u>12</u>	
Gambar 2.3	Skema Sistem Off-Grid	12	
Gambar 2.4	Prinsip kerja sel surya	_14	
Gambar 2.5	Struktur Modul Surya Jenis Monokristal	15	
Gambar 2.6	Struktur Modul Surya Jenis Polikristal	16	
Gambar 2.7	Struktur Modul Surya Jenis Thin-Film	17	
Gambar 2.8	Baterai	18	
Gambar 2.9	Penyambungan baterai secara seri	_20	
Gambar 2.10	Rangkaian seri	20	
Gambar 2.11	Penyambungan baterai secara paralel	<u>21</u>	
Gambar 2.12	Rangkaian paralel	21	
Gambar 2.13	Pemasangan Solar Charge Controller di sistem PLTS pada		
umumnya		_24	
Gambar 2.14	Tampilan Preliminary Design pada aplikasi PVSyst	26	
Gambar 2.15	Tampilan <i>Project Design</i> pada aplikasi PVSyst	_26	
Gambar 3.1	Flowchart Penelitian	_29	
Gambar 3.2	Alur simulasi PVSyst	_32	
Gambar 3.3	Block sistem tenaga hybrid on grid	32	
Gambar 3.4	Skema sistem PLTS hybrid on grid	<u>33</u>	
Gambar 3.5	Power Quality Analyzer merk Kyoritsu KEW 6315	_34	
Gambar 4.1	Kurva Ketinggian Matahari Kelurahan Mugarsari	38	
Gambar 4.2	Grafik kebutuhan energi listrik	<u>.</u> 39	
Gambar 4.3	Hasil simulasi Project Design dengan kemiringan modul P	V	
monokristal	130 Wp sebesar 9°	_40	
Gambar 4.4	Grafik energi listrik yang dihasilkan PV berikut loss		
system		40	
Gambar 4.5	Grafik performance ratio modul PV 130 Wp monokristal		
dengan kemi	ringan 9°	41	
Gambar 4.6 Hasil simulasi Project Design dengan kemiringan modul PV			
monokristal	130 Wp sebesar 20°	42	

Gambar 4.7 Grafik energi listrik yang dihasilkan PV berikut lo	SS
sistem	42
Gambar 4.8 Grafik <i>performance ratio</i> modul PV 130 Wp mon	okristal
dengan kemiringan 20°	43
Gambar 4.9 Hasil simulasi Project Design dengan kemiringan	modul PV
monokristal 130 Wp sebesar 30°	44
Gambar 4.10 Grafik energi listrik yang dihasilkan PV berikut lo	ss sistem 44
Gambar 4.11 Grafik performance ratio modul PV 130 Wp mon	okristal
dengan kemiringan 30°	45
Gambar 4.12 Hasil simulasi Project Design dengan kemiringan	modul PV
polikristal 280 Wp sebesar 9°	46
Gambar 4.13 Grafik energi listrik yang dihasilkan PV berikut lo	oss sistem 46
Gambar 4.14 Grafik performance ratio modul PV polikristal 28	0 Wp dengan
kemiringan 9°	47
Gambar 4.15 Hasil simulasi Project Design dengan kemiringan	modul PV
polikristal 280 Wp sebesar 20°	48
Gambar 4.16 Grafik energi listrik yang dihasilkan PV berikut lo	oss sistem 48
Gambar 4.17 Grafik performance ratio modul PV polikristal 28	0 Wp dengan
kemiringan 20°	49
Gambar 4.18 Hasil simulasi Project Design dengan kemiringan	modul PV
polikristal 280 Wp sebesar 30°	49
Gambar 4.19 Grafik energi listrik yang dihasilkan PV berikut lo	oss sistem 50
Gambar 4.20 Grafik performance ratio modul PV polikristal 28	0 Wp dengan
kemiringan 30°	
Gambar 4.21 Grafik perbandingan hasil energi listrik modul sur	ya merk AE
Solar buatan Jerman	51
Gambar 4.22 Hasil simulasi Project Design dengan kemiringan	modul PV
monokristal 260 Wp sebesar 9°	52
Gambar 4.23 Grafik energi listrik yang dihasilkan PV berikut lo	oss sistem 52
Gambar 4.24 Grafik performance ratio modul PV monokristal 2	260 Wp
dengan kemiringan 9°	53

Gambar 4.25 Hasil simulasi Project Design dengan kemiringan modul P	V
monokristal 260 Wp sebesar 20°	<u>53</u>
Gambar 4.26 Grafik energi listrik yang dihasilkan PV berikut loss sistem	<u>.</u> 54
Gambar 4.27 Grafik <i>performance ratio</i> modul PV monokristal 260 Wp	
dengan kemiringan 20°	_54
Gambar 4.28 Hasil simulasi Project Design dengan kemiringan modul P	V
monokristal 260 Wp sebesar 30°	<u>55</u>
Gambar 4.29 Grafik energi listrik yang dihasilkan PV berikut loss sistem	<u>.</u> 55
Gambar 4.30 Grafik <i>performance ratio</i> modul PV monokristal 260 Wp	
dengan kemiringan 30°	_56
Gambar 4.31 Hasil simulasi Project Design dengan kemiringan modul	
PV polikristal 280 Wp sebesar 9°	_56
Gambar 4.32 Grafik energi listrik yang dihasilkan PV berikut loss sistem	<u>.</u> 57
Gambar 4.33 Grafik performance ratio modul PV polikristal 280 Wp	
dengan kemiringan 9°	_57
Gambar 4.34 Hasil simulasi Project Design dengan kemiringan modul	
PV polikristal 280 Wp sebesar 20°	_58
Gambar 4.35 Grafik energi listrik yang dihasilkan PV berikut loss sistem	<u>.</u> 58
Gambar 4.36 Grafik performance ratio modul PV polikristal 280 Wp	
dengan kemiringan 20°	<u> 59 </u>
Gambar 4.37 Hasil simulasi Project Design dengan kemiringan modul	
PV polikristal 280 Wp sebesar 30°	<u>59</u>
Gambar 4.38 Grafik energi listrik yang dihasilkan PV berikut loss sistem	<u>60</u>
Gambar 4.39 Grafik performance ratio modul PV polikristal 280 Wp	
dengan kemiringan 30°	_60
Gambar 4.40 Grafik perbandingan hasil energi listrik modul surya merk	
S-Energy buatan Korea	61
Gambar 4.41 Grafik hasil simulasi sistem PLTS menggunakan perangkat	t
lunak PVSyst	_62
Gambar 4.42 Penempatan modul surya merk S-Energy tipe monokristal	
daya 280 Wp dengan sudut kemiringan 9°	<u>.</u> 63
Gambar 4.43 Dimensi modul surya merk S-Energy tipe monokristal daya	ì