BAB II

TINJAUAN PUSTAKA

2.1 Landasan Teori

Penelitian itu berawal di masalah berakhir di pemecahan masalah (Wahono, 2021). Metode penelitian yang digunakan pada penelitian ini adalah metode penelitian kuantitatif. Maka perlu melakukan kajian teoritis dan studi pendahuluan terlebih dahulu pada objek untuk dapat memilih variabel apa yang akan diteliti. (Prof. Dr. Sugiyono, 2020). Berikut adalah *literature map* sebagai bahan kajian pustaka dalam penelitian ini.

Gambar 2.1 Peta Literasi Penelitian (Stefani. 2023)

2.1.1 Analisis Sentimen (Sentiment Analysis)

Analisis sentimen adalah bidang penelitian yang terdapat dalam pengolahan bahasa natural, komputasi lingustik dan text mining. Analisis sentimen atau opinion mining adalah studi komputasional dari opini orang lain, *appraisal*, serta emosi terdapat dalam entitas, *event* dan atribut yang dimiliki. Entitas yang dimaksud bisa berupa produk, individu, layanan, organisasi, kejadian, fenomena atau isu (Aggarwal, 2018). Analisis sentimen yang digunakan pada penelitian ini adalah

mengelompokkan polaritas pada suatu teks yang terdapat dalam sebuah dokumen atau kalimat kemudian dikemukakan bersifat positif, negatif atau netral.

2.1.2 Term Frequency – Inverse Document Frequency (TF-IDF)

Term Frequency–Inverse Document Frequency (TF-IDF) merupakan statistik numerik untuk mencerminkan pentingnya sebuah kata pada dokumen dalam sebuah kumpulan dokumen atau corpus (Rajaraman & Ullman, 2011). TF-IDF terdiri dari Term Frequency (TF) dan Inverse Document Frequency (IDF).

Term Frequency (TF) merupakan jumlah frekuensi kemunculan kata dalam sebuah dokumen, dimana jumlah suatu kata yang muncul pada dokumen dibagi dengan jumlah kata yang terdapat pada dokumen, yang dirumuskan sebagai:

$$TF_{t,d} = \frac{f_{t,d}}{\text{jumlah kata pada d}}$$
 (2.1)

Dimana $f_{t,j}$ merupakan jumlah kata t yang muncul pada dokumen d.

Inverse Document Frequency (IDF) merupakan ukuran berapa banyak informasi yang diberikan oleh sebuah kata. Berbeda dengan IDF tradisional, IDF sklearn menggunakan konstanta kesatuan dalam penyebut dan pembilang. (Pedregosa et al., 2011a) yang dirumuskan sebagai:

$$idf(t) = \log \frac{1+n}{1+df(t)} + 1$$
 (2.2)

Dimana n merupakan jumlah dokumen dalam sebuah korpus dan df(t) merupakan jumlah munculnya kata i pada seluruh dokumen, dirumuskan sebagai:

$$TF.IDF_{(i,i,k)} = TF_{i,i} \times IDF_i$$
 (2.3)

2.1.3 Machine Learning (ML)

Machine Learning adalah bagian dari Artificial Intelegence (AI) yang memungkinkan sebuah sistem untuk belajar dari data, bukan melalui pemrograman eksplisit (Hurwitz and Kirsch 2018). Machine Learning merupakan sebuah sistem yang dapat belajar dengan sendirinya. Sistem tersebut dapat memutuskan sesuatu dengan sendirinya tanpa harus ada campur tangan manusia. Hal ini menyebabkan komputer menjadi semakin pintar karena dapat belajar sendiri dari data yang dimilikinya. Dalam machine learning, data berperan sebagai bahan input untuk belajar (training) mengenai sesuatu untuk menghasilkan analisis yang benar. Data pada machine learning biasanya terbagi menjadi dua bagian, yaitu data training dan data testing. Data training digunakan untuk melatih algoritma machine learning sedangkan data testing digunakan untuk mengetahui performa dari algoritma yang digunakan. Dalam beberapa kasus terdapat data validation yang berperan sebagai bahan evaluasi untuk algoritma apabila hasil kurang maksimal.

Teknik machine learning dibagi menjadi beberapa macam, yaitu supervised learning, unsupervised learning, reinforcement learning, serta neural network dan deep learning (Hurwitz and Kirsch 2018). Pada supervised learning, data memiliki fitur berlabel yang mendefinisikan arti data. Sedangkan pada unsupervised learning, data tidak memiliki label. Teknik unsupervised learning memungkinkan mengklasifikasikan data berdasarkan klaster yang ditemukan. Reinforcement learning menerima umpan balik dari analisis data sehingga pengguna dipandu ke hasil terbaik. Teknik ini belajar melalui trial dan error

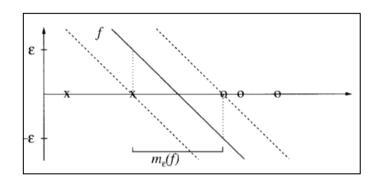
sehingga keputusan yang berhasil akan menghasilkan proses yang diperkuat. *Deep learning* adalah metode *machine learning* khusus yang menggabungkan jaringan saraf dalam lapisan yang berurutan untuk belajar dari data secara berulang yang memungkinkan menyelesaikan permasalahan dari data yang tidak terstruktur.

2.1.4 Support Vector Machine (SVM)

Support Vector Machine (SVM) adalah suatu teknik untuk melakukan sebuah prediksi, baik klasifikasi maupun regresi yang terinspirasi dari teori pembelajaran statistik (Vapnik, 1999). SVM membangun hyper-plane atau set hyper-plane dalam ruang dimensi tinggi atau tak terbatas, yang dapat digunakan untuk klasifikasi, regresi atau tugas lainnya (Pedregosa et al., 2011b) . Secara intuitif, pemisahan yang baik dicapai oleh hyper-plane yang memiliki jarak terbesar ke titik data pelatihan terdekat dari kelas mana pun (disebut margin fungsional), karena secara umum semakin besar margin, semakin rendah kesalahan generalisasi pengklasifikasi (Pedregosa et al., 2011b).

Banyak teknik *data mining* atau *machine learning* yang dikembangkan dengan asumsi kelinieran, sehingga algoritma yang dihasilkan terbatas untuk kasus-kasus yang linier. *Support Vector Machine* dapat bekerja pada data *non-linier* dengan menggunakan pendekatan kernel pada fitur data awal himpunan data. Berikut merupakan jenis-jenis fungsi kernel (Aggarwal, 2018).

1. Kernel Linear



Gambar 2.2 Hyper-Plane pada SVM (Schölkopf et al. 2000)

hyperplane klasifikasi linier SVM dinotasikan:

$$f(x) = w^T x + b (2.4)$$

Selain itu menurut (Vapnik dan Cortes, 1995) diperoleh persamaan:

$$[(w^{T}.x_{i}) + b] \ge 1 \text{ untuk } y_{i} = +1$$

 $[(w^{T}.x_{i}) + b] \ge -1 \text{ untuk } y_{i} = -1$
(2.5)

dengan:

 x_i = himpunan data training

$$i = 1, 2, ..., n$$

 y_i = label dari kelas x_i

2. Kernel Polinomial, digunakan untuk menyelesaikan masalah klasifikasi dimana dataset pelatihan sudah normal

- 3. Kernel Fungsi Gaussian Radial Basis (GRB), merupakan kernel yang paling banyak digunakan untuk menyelesaikan masalah klasifikasi untuk dataset yang tidak terpisah secara linier, dikarenakan akurasi pelatihan dan akurasi prediksi yang sangat baik pada kernel ini
- 4. Kernel Sigmoid, merupakan kernel trik SVM yang merupakan pengembangan dari jaringan saraf tiruan

2.1.5 Naïve Bayes Classifier (NBC)

Metode Naïve Bayes adalah metode klasifikasi dalam penambangan teks yang digunakan dalam analisis sentimen. Metode ini berpotensi baik dalam klasifikasi dalam hal presisi dan komputasi data. Naïve Bayes banyak digunakan dalam teknik klasifikasi adalah Unigram Naïve Bayes, Multinomial Naïve Bayes, dan Maximum Entropy Classification (Aggarwal, 2018). Berikut teorema umum naïve bayes yang digunakan dalam penelitian ini:

$$P(H|X) = \frac{P(X|H).P(H)}{P(X)}$$
 (2.6)

Keterangan:

X = data dengan *class* yang belum diketahui

H = hipotesis data merupakan suatu *class* spesifik

P(H|X) = probabilitas hipotesis H berdasar kondisi X (posteriori probabilitas)

P(H) = probabilitas hipotesis H (prior probabilitas)

P(X|H) = probabilitas X berdasarkan kondisi pada hipotesis H

P(X) = probabilitas X

Sedangkan distribusi yang digunakan adalah pengklasifikasi Guassian Naive Bayes. Istilah Multinomial Naive Bayes memberi tahu bahwa setiap P(Fi|C) adalah distribusi multinomial, bukan distribusi lainnya. Ini berfungsi dengan baik untuk data yang dapat dengan mudah diubah menjadi jumlah, seperti jumlah kata dalam teks. Ringkasnya, pengklasifikasi Naive Bayes adalah istilah umum yang mengacu pada independensi bersyarat dari setiap fitur dalam model, sedangkan pengklasifikasi Multinomial Naive Bayes adalah contoh spesifik dari pengklasifikasi Naive Bayes yang menggunakan distribusi multinomial untuk setiap fitur (Stuart J. Russell, 2021).

2.1.6 Confusion Matrix

Confusion matrix merupakan metode yang meringkas kinerja klasifikasi clasifier atau metode evaluasi sehubungan dengan beberapa data pengujian (Ting, 2010). Evaluasi performa model yang dibuat pada penelitian ini menggunakan metode accuracy, precision, recall, dan F1-Score. Untuk menghitung metode evaluasi yang sudah disebutkan, pada penelitian ini dibutuhkan True Positive (TP), False Neutral1 (FNt1), False Negative1 (FNg1), False Positive1 (FP1), True Neutral (TNt), False Negative2 (FNg2), False Positive2 (FP2), False Neutral2 (FNt2), and True Negative (TNg) dari confusion matrix setiap label (Yutika et al., 2021). Tabel 2.1 merupakan tabel matriks tiga dimensi yang terdiri dari tiga kelas, kelas positif, negatif, dan netral.

Tabel 2. 1 *Confusion Matrix* Tiga Kelas Sentimen

Actual	Prediction

	Positive	Neutral	Negative
	True Positive	False Neutral1	False Negative1
Positive	(TP)	(FNt1)	(FNg1)
	False Positive1	True Neutral	False Negative2
Neutral	(FP1)	(TNt)	(FNg2)
	False Positive2	False Neutral2	True Negative
Negative	(FP2)	(FNt2)	(TNg)

Sumber: (Saputro et al., 2018a)

Keterangan:

1. True positive : jumlah record positif yang diklasifikasikan sebagai positif,

2. True negative : jumlah record negatif yang diklasifikasikan sebagai negatif.

3. True netral : jumlah record netral yang diklasifikasikan sebagai netral.

4. False positive : jumlah record positif yang diklasifikasikan sebagai bukan positif,

5. False negative : jumlah record negatif yang diklasifikasikan sebagai bukan negatif.

6. False netral : jumlah record netral yang diklasifikasikan sebagai bukan netral.

Berdasarkan Tabel 2.1, penghitungan nilai *accuracy, precision, recall*, pada penelitian ini dapat dirumuskan sebagai berikut (Saputro et al., 2018b):

a. Accuracy (Akurasi)

Accuracy adalah persentase jumlah *record* dari *train data* yang diklasifikasikan secara benar oleh algoritma, yang dinyatakan dalam persamaan 2.7.

$$Accuracy = \frac{TP + TNg + TNt}{TP + FNg1 + FNt1 + FP1 + TNg + FNt2 + FP2 + FNg2 + TNt} \times 100\% \tag{2.7}$$

b. Recall

Recall adalah evaluasi yang dilakukan untuk mengukur kelengkapan hasil klasifikasi, yang dinyatakan dalam

Recall. positive =
$$\frac{TP}{TP + FNg1 + FNt1} \times 100\%$$
 (2.8)

$$Recall.negative = \frac{TNg}{FP1+TNg+FNt2} \times 100\%$$
 (2.9)

$$Recall.neutral = \frac{TNt}{FP2+FNg2+TNt} \times 100\%$$
 (2.10)

c. Precision (Presisi)

Precision adalah ukuran ketepatan hasil klasifikasi, yang dinyatakan dalam:

Precission. positive = =
$$\frac{TP}{TP+FP1+FP2} \times 100\%$$
 (2.11)

Precission. negative =
$$\frac{TNg}{FNg1+TNg+FNg2} \times 100\%$$
 (2.12)

$$Precission.neutral = \frac{TNt}{FNt1+FNt2+TNt} \times 100\%$$
 (2.13)

d. F-Measure atau f1 score

Untuk menghitung F1 – Score, berdasarkan hasil penghitungan nilai accuracy, precision, recall dengan rumus di atas dapat dirumuskan sebagai berikut (Han et al., 2012):

$$F1 - Score. positive = 2 x \frac{precision. Pst \ x \ recall. Pst}{precision. Pst + recall. Pst}$$
 (2.14)

$$F1 - Score.negative = 2 x \frac{precision. Ng x recall. Ng}{precision. Ng + recall. Ng}$$
 (2.15)

$$F1 - Score.neutral = 2 x \frac{precision.Nt x recall.Nt}{precision.Nt + recall.Nt}$$
 (2.16)

2.2 State of The Art Bidang Penelitian

Tabel 2. 2 Matriks Penelitian

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
1	(Samsir, Ambiyar,	2021	Analisis Sentimen	Pembelajaran daring belum	Hasil penelitian ini menunjukkan
	Unung		Pembelajaran Daring Pada	maksimal diterapkan di Indonesia	bahwa pembelajaran daring
	Verawardina,		Twitter di Masa Pandemi	pada masa pandemi yang terlihat	memiliki 30% sentimen positif,
	Firman Edi, 2021)		Covid-19 Menggunakan	dari tingginya kekecewaan public	69% sentimen negatif dan 1%
			Metode Naïve Bayes	pada awal November 2020	netral.
2	(Oryza Habibie	2021	Klasifikasi Ujaran	Penggunaan kernel RBF	Kernel RBF memiliki nilai
	Rahman et al.,		Kebencian pada Media	menghasilkan nilai accuracy yang	accuracy 93%, nilai precision
	2021)		Sosial Twitter	paling tinggi di antara kernel linear	84%, nilai recall sebesar 86%, dan
			Menggunakan SVM	dan sigmoid.	nilai F-measure sebesar 83%.
3	Safitri (Juanita,	2020	Analisis Sentimen	Algoritma yang digunakan adalah	Klasifikasi Naïve Bayes memiliki
	2020)		Persepsi Masyarakat	Naïve Bayes dengan menggunakan	tingkat akurasi sebesar 82,90%.

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
			Terhadap Pemilu 2019	perangkat lunak Data Mining	Diperoleh masing-masing sebesar
			Pada Media Sosial	WEKA untuk melakukan analisis	34,5% (471) tweet positif dan
			Twitter Menggunakan	sentimen persepsi masyarakat	65,5% (895) tweet negatif
			Naïve Bayes	terhadap pemilu 2019	terhadap hasil quick count.
4	Rian Tineges,	2020	Analisis Sentimen	Metode yang digunakan adalah	Berdasarkan penelitian yang
	Agung Triayudi,		Terhadap Layanan	Support Vector Machine dengan	dilakukan diperoleh nilai accuracy
	Ira Diana Sholihati		Indihome Berdasarkan	hasil yang dapat disimpulkan	87%, precision 86%, recall 95%,
	(Tineges et al.,		Twitter Dengan Metode	adalah tingkat kepuasan pengguna	error rate 13% dan F1-score 90%.
	2020)		Klasifikasi Support	layanan Indihome cukup rendah.	
			Vector Machine (SVM)		
5	Yessi Yunita Sari,	2019	Sarcasm Detection for	Penelitian ini menggunakan	Ada peningkatan rata-rata akurasi
	Aina Musdholifah,		Sentiment Analysis in	algoritma Random Forest.	sebesar 5,49% dengan nilai
	Anny Kartika Sari		Indonesian Tweets	Ekstraksi fitur untuk analisis	akurasi sebasar 80,4%, presisi

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
	(Yunitasari et al.,			sentiment menggunakan TF-IDF	sebesar 83,2% dan recall sebesar
	2019)			dan klasifikasinya menggunakan	91,3%.
				algoritma Naïve Bayes.	
6	Tati Mardiana,	2019	Komparasi Metode	Mengomparasi tingkat akurasi	Neural Network dan Support
	Hafiz Syahreva,		Klasifikasi Pada Analisis	dalam mengklasifikasi opini masy	Vector Machine menghasilkan
	Tuslaela		Sentimen Usaha	dari data yang digunakan diambil	akurasi tertinggi sebesar 83%.
	(Mardiana et al.,		Waralaba Berdasarkan	di twitter yang berjumlah 1767	Decision Tree sebesar 81%, Naïve
	2019b)		Data Twitter	opini yang terdiri dari 1265 data	Bayes sebesar 80%, dan K-Nearest
				positif dan 502 data negatif.	Neighbors sebesar 52%.
7	Styawati, Khabib	2019	A Support Vector	Metode yang digunakan dalam	Firefly Algorithm dapat membantu
	Mustofa		Machine-Firefly	penelitian ini adalah SVM dengan	SVM untuk mendapatkan
	(Styawati &		Algorithm for Movie	menggunakan FA untuk	kombinasi parameter yang sesuai
	Mustofa, 2019)			mengoptimasi parameter SVM, dan	

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
			Opinion Data	metode Firefly sebagai metode	berdasarkan akurasi dengan waktu
			Classification.	optimasi parameter SVM.	eksekusi yang lebih singkat
8	Muh Amin	2019	Sentiment Analysis of	Mengklasifikasi review novel	Metode LTSM memiliki hasil
	Nurrohman, Azhari		Novel Review Using Long	berbahasa Indonesia menggunakan	yang lebih baik dibandingkan
	SN		Short-Term Memory	metode LTSM yang dalam	dengan Naïve Bayes dengan nilai
	(Nurrohmat & SN,		Method	pengujiannya akan dibandingkan	akurasi 72,85%, presisi 73%,
	2019)			dengan metode Naïve Bayes.	recall 72% dan f-measure 72%.
9	Mona Cindo, Dian	2019	Studi Komparatif Metode	Menganalisis sentiment dengan	Pada metode Maximum Entropy
	Palupi Rini,		Ekstraksi Fitur pada	menambahkan lima fitur berbeda	menggunakan semua fitur
	Ermatita		Analisis Sentimen	seperti topik pragmatic, lexical n-	ekstraksi dengan akurasi 92,7%
	(Cindo et al., 2019)		Maskapai Penerbangan	grams, POS, sentimen dan LDA,	dan pada Support Vector Machine
			Menggunakan Support	menggunakan dua metode	akurasi yang diperoleh adalah
					89,2%

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
			Vector Machine dan	pembanding yaitu Support Vector	
			Maximum Entropy	Machine dan Maximum Entropy.	
10	Dinda Ayu Mutia	2018	Komparasi Algoritma	Menemukan informasi yang	Algoritma Naïve Bayes lebih
	(Ayu Muthia,		Klasifikasi Text Mining	relevan dan tepat waktu dari	unggul dari algoritma Support
	2018)		Untuk Analisis Sentimen	berbagai review menggunakan	Vector Machine dalam
			Pada Review Restoran	algoritma Naïve Bayes dan Support	mengklasifikasi review restoran
				Vector Machine dengan	dengan teks berbahasa Indonesia.
				menambahkan fitur generate 2-	Akurasi algoritma Naïve Bayes
				grams (Bigrams) untuk itu dibuat	mencapai 87%, algoritma Support
				aplikasi sederhana berbasis desktop	Vector Machine menghasilkan
				menggunakan bahasa Java.	akurasi sebesar 56%.
11	Tedy Agastya Dwi	2017	Klasifikasi Emosi Teks	Maximum Entropy menganalisa	Dari uji coba sistem klasifikasi
	Permana, Firdaus		Berbahasa Indonesia	query dengan dataset pada	dengan menggunakan data <i>query</i>

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
	Sholihin, Fika		Menggunakan Metode	database untuk membentuk model	diperoleh hasil akurasi sebesar
	Hastarita		Maximum Entropy	probabilitas yang kemudian akan	93%, dan dengan menggunakan
	(Tedy Agastya			dilanjutkan dengan penentuan hasil	data crawler twitter diperoleh
	Dwi Permana,			klasifikasi. Proses uji coba pada	hasil akurasi sebesar 63%,
	Firdaus Sholihin,			sistem ini dilakukan dengan 3 cara	kemudian dengan menggunakan
	2017)			yaitu uji coba sistem klasifikas	data sampel diperoleh hasil rata-
				query, twitter dan Data Sampel.	rata akurasi sebesar 64,6%.

2.3 Relevansi Penelitian

Tabel 2. 3 Tabel Relevansi Penelitian

Peneliti	(Samsir, 2021)	(Oryza, 2021)	(Stefani, 2022)
Judul	Analisis Sentimen Pembelajaran	Klasifikasi Ujaran Kebencian pada	Analisis Sentimen Terhadap Layanan
	Daring Pada Twitter di Masa	Media Sosial Twitter Menggunakan	Sekuritas Online untuk Investasi
	Pandemi Covid-19 Menggunakan	Support Vector Machine	Menggunakan Support Vector Machine
	Metode Naïve Bayes		dan Naïve Bayes Classifier.
Masalah	Sentimen terkait pembelajaran daring	Ujaran kebencian pada aplikasi twitter	Ulasan atau review online pada aplikasi
Penelitian	saat Covid-19 pada aplikasi <i>twitter</i>	adalah perilaku yang dapat merugikan	Ajaib Sekuritas di Google Play.
Objek Penelitian	Klasifikasi <i>multi-class</i> pada media	Klasifikasi <i>multi-class</i> pada media	Klasifikasi <i>multi-class</i> pada ulasan di
	sosial twitter dan digunakan metode	sosial <i>twitter</i> setelah itu data masuk ke	aplikasi Ajaib Sekuritas dan dilakukan
	Naïve Bayes pada tahap klasifikasi	dalam proses pembobotan	klasifikasi menggunakan algoritma
	sentimen dan interpretasi hasil	menggunakan TF-IDF dan klasifikasi	Support Vector Machine dan Naïve
	analisis sentimen mengenai kasus	menggunakan Support Vector	Bayes Classifier
	Pembelajaran Daring saat Covid-19	Machine mengenai ujaran kebencian	

Algoritma /	Menggunakan metode klasifikasi	Menggunakan Support Vector	Menggunakan metode Naïve Bayes dan
Metode	Naïve Bayes.	Machine	Support Vector Machine
Implementasi	Klasifikasi <i>multi-class</i> dilakukan	Klasifikasi <i>multi-class</i> dilakukan	Klasifikasi <i>multi-class</i> dilakukan
	dengan bahasa pemrograman <i>python</i> .	dengan bahasa pemrograman python.	dengan bahasa pemrograman python.