BAB II

LANDASAN TEORI

2.1. Deteksi Tepi dan Pengolahan Citra

Pengolahan citra atau *image processing* adalah bidang ilmu yang berhubungan dengan proses transformasi pada gambar atau citra, dimana proses pengolahan citra dilakukan dengan tujuan untuk mendapatkan hasil kualitas citra yang lebih baik (Supriyatin, 2020a). Deteksi tepi merupakan salah satu tahapan awal pada proses pengolahan citra. Deteksi tepi biasanya digunakan untuk mendapatkan bentuk tepi dari suatu objek dengan memanfaatkan perubahan pada nilai intensitas drastis yang terjadi pada suatu batas dari dua area yang berbeda. Deteksi tepi adalah kumpulan atau himpunan dari piksel yang saling terhubung dan terletak pada batas dari dua area (Derisma, 2016). Suatu titik (x,y) dikatakan sebagai suatu tepi atau *edge* dari suatu citra apabila titik tersebut mempunyai perbedaan yang sangat jelas jika dibandingkan dengan sekelilingnya (Kuswandi & Fadillah, 2019).

Deteksi tepi memiliki tujuan untuk melakukan pengelompokan objek-objek di dalam citra dan digunakan untuk malakukan analisa citra lebih lanjut. Terdapat dua golongan yang membedakan deteksi tepi, yaitu golongan pertama atau sering disebut deteksi tepi orde pertama dan golongan kedua yang sering disebut deteksi tepi orde kedua (Derisma, 2016). Orde pertama deteksi tepi bekerja dengan menggunakan diferensial atau turunan orde pertama, dimana yang termasuk golongan orde pertama adalah *canny, sobel, Robert, dan prewitt*. Orde kedua

deteksi tepi menggunakan diferensial atau turunan orde kedua yaitu *Laplacian of Gaussian* (LoG) (Lynn dkk., 2021).

2.2. Deteksi Tepi Canny

Deteksi tepi *canny* adalah deteksi tepi yang menggunakan beberapa tahap proses untuk mendeteksi tepian objek pada gambar. *Canny* menggunakan kernel *dervatif gaussian* pada tahap awal untuk melakukan penyaringan pada *noise* (Saputra dkk., 2022). Pada tahapan ini yang merupakan bagian yang sangat penting dalam algoritma canny, *gaussian filter* digunakan untuk menghapus *noise* pada gambar karena *noise* bisa diasumsikan oleh algoritma nantinya sebagai sebuah tepi. Elemen ini menggunakan 1 elemen pada *gaussian kernel*, sehingga kernel harus dilakukan normalisasi terlebih dahulu sebelum menggunakan konvolusi pada gambar (Akbari Sekehravani dkk., 2020). *Gausian filter* dapat dihitung menggunakan persamaan (2.1)

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} \cdot e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$
 ...(2.1)

Ketika gambar sudah melewati proses filtering maka dikalkulasikan derivatives I_x dan I_y yang dikalkulasikan pada horizontal dan vertikal gambar. Ini dapat dilakukan dengan menggunakan sobel-feldmen convolution seperti yang ditunjukan pada matrix 2.2 (Kim dkk., 2020).

$$K_{x} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 2 \end{pmatrix}, K_{y} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \dots (2.2)$$

Setelah kernel diaplikasikan pada gambar, perlu dihitung *gradient* magnitudes dan sudut untuk proses selanjutnya yang dikalkulasikan pada persamaan 2.3

$$|G| = \sqrt{I_x^2 + I_y^2}$$
, $\theta(x, y) = \arctan\left(\frac{I_y}{I_x}\right)$...(2.3)

Sesudah itu untuk mengurangi duplikasi piksel, maka dilakukan proses nonmaximum suppression dimana jika magnitude dari pixel sekarang lebih besar
daripada magnitude tetangga maka tidak akan dilakukan apapun, jika yang terjadi
sebaliknya magnitude sekarang akan dikurangi menjadi 0. Setelah proses itu maka
akan dilakukan tresholding dimana nilai-nilai magnitude yang tidak melewati batas
ambang bawah dan atas akan dikategorikan sebagai strong jika melewati treshold
dan jika tidak akan disebut sebagai coresponding pixel (Kalbasi & Nikmehr, 2020).

2.3. Deteksi Tepi Sobel

Deteksi tepi sobel melakukan pengukuran terhadap 2D spatial gradient pada citra dan memprioritaskan daerah dengan high spatial frequency yang berkorespodensi pada tepi. Sobel pada umumnya digunakan untuk mendapatkan absolute gradient magnitude pada tiap kernelnya di citra grayscale (Lynn dkk., 2021).

Sobel terdiri atas sepasang 3x3 convolution kernels G_x dan G_y, G_y pada dasarnya adalah rotasi 90° dari Gx seperti yang ditunjukan pada persamaan 2.4.

$$G_X = \begin{pmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{pmatrix}, G_Y = \begin{pmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \dots (2.4)$$

Kernel tersebut telah didesain untuk mendeteksi tepian secara vertikal dan horizontal pada *grid* citra, kernel tersebut dapat diaplikasikan termisah pada citra, untuk menghitung gradient komponen dari tiap rotasi. Untuk menghitung *absolute magnitude gradient* pada tiap pointnya dapat digunakan persamaan 2.5 (Han dkk., 2020).

$$|G| = \sqrt{Gx^2 + Gy^2}$$
 ...(2.5)

Sedangkan untuk menghitung *approximate magnitude* dapat digunakan persamaan 2.6

$$|G| = |Gx| + |Gy|$$
 ...(2.6)

2.4. Metode Box Counting

Box counting adalah teknik yang digunakan untuk memperkirakan dimensi fraktal pada suatu objek yang ada pada citra digital. Algoritma ini di dasarkan pada ide sederhana untuk menutupi objek dengan kotak-kotak yang semakin kecil dan kemudian menghitung jumlah kotak yang diperlukan untuk menutupi sebuah objek dalam citra (NAYAK & MISHRA, 2021). Berikut adalah langkah yang dapat dilakukan untuk melakukan box counting:

- a. Tutup citra menggunakan box-box persegi dimana panjang box nya didefinisikan sebagai r.
- b. Menghitung banyaknya kotak N yang sudah terisi.
- c. Menghitung nilai $\log(1/r)$ dan $\log(N)$.

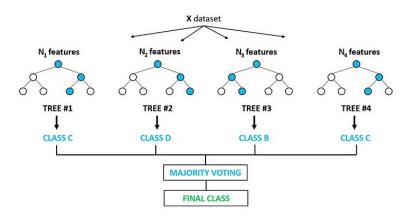
d. Menghitung regresi linear untuk menghitung slope dan nilai fraktal D dengan persamaan 2.7 berikut

$$a = \frac{(\Sigma_k^n = 1^{xy}) - \frac{(\Sigma_k^n = 1^x)(\Sigma_k^n = 1^y)}{n}}{(\Sigma_k^n = 1^{x^2}) - \frac{(\Sigma_k^n = 1^x)^2}{n}} \dots (2.7)$$

Pseudo code yang dapat diikuti dalam menghitung box counting ini adalah sebagai berikut:

Tabel 2. 1 Pseudo-Code Box Counting

```
function box counting(image):
    unique dimensions \leftarrow \emptyset
    for k from 0 to m do:
         r \leftarrow 2^k
         N \leftarrow \text{count filled boxes(image, r)}
         log_1_over_r \leftarrow log(1/r)
         log_N \leftarrow log(N)
         add (log 1 over r, log N) to unique dimensions
    slope ← calculate slope(unique dimensions)
    fractal dimension ← -slope
    return fractal dimension
function count filled boxes (image, r):
    filled boxes \leftarrow 0
    for each box of size r in image do:
         if box is filled then
              filled boxes \leftarrow filled boxes + 1
    return filled boxes
function calculate slope (points):
    sum x \leftarrow 0
    sum y \leftarrow 0
    sum xy \leftarrow 0
    sum x squared \leftarrow 0
    n ← length (points)
    for each (x, y) in points do:
         sum_x \leftarrow sum_x + x
         sum_y \leftarrow sum_y + y
         sum xy \leftarrow sum xy + (x * y)
         sum x squared \leftarrow sum x squared + (x * x)
```


```
alpha ← ((sum_xy - (sum_x * sum_y) / n) / (sum_x_squared - (sum_x * sum_x) / n))

return alpha
```

2.5. Klasifikasi citra dengan random forest classifier

Random Forest Classifier adalah algoritma pembelajaran mesin yang sangat umum digunakan yang mengkombinasikan beberapa descision tree untuk mencapai satu hasil seperti yang ditunjukkan pada Gambar 2. 1.

Random Forest Classifier

Gambar 2. 1 Model Random Forest Classifier

Decision tree adalah model pembelajaran mesin yang mengambil keputusan berdasarkan serangkaian aturan if-then-else yang dibentuk secara hierarkis. Namun, satu pohon keputusan memiliki kecenderungan untuk overfitting, Random Forest muncul sebagai solusi atas masalah overfitting ini dengan menggabungkan beberapa pohon keputusan yang dibuat dari sampel acak dari data pelatihan. Proses pengambilan sampel acak ini disebut sebagai bootstrap sampling. Setiap pohon keputusan dalam Random Forest dihasilkan dari proses pembuatan model yang

dilakukan dengan mengambil sampel acak dari data pelatihan (Purbolaksono dkk., 2021).

Ketika melakukan prediksi, setiap pohon dalam *Random Forest* memberikan prediksi mereka masing-masing, dan hasil akhirnya ditentukan oleh mayoritas suara dari semua pohon. Karena *Random Forest* menggabungkan banyak pohon keputusan, ia cenderung memiliki kinerja yang lebih baik daripada satu pohon keputusan tunggal dan memiliki kemampuan yang baik untuk menangani overfitting (Azimah & Rizky Nova Wardani, 2022).

2.6. Citra tumor kulit

Salah satu peran kulit adalah melindungi tubuh dari kerusakan yang dapat disebabkan oleh paparan radiasi sinar *ultraviolet* (UV). Jika terlalu sering terpapar sinar *ultraviolet* secara langsung dapat mengakibatkan berbagai masalah atau penyakit pada kulit, salah satunya dapat menyebabkan penyakit tumor kulit (Asril, 2023).

Tumor kulit secara umum digolongkan kepada dua jenis, yaitu tumor jinak contohnya adalah *nevus aptikal*, dan tumor ganas contohnya adalah *melanoma* atau sering disebut tumor kulit, *Nevus* normal atau sering diartikan juga sebagai tahi lalat atau tanda lahir. *Melanoma* adalah kanker kulit atau tumor ganas yang diketahui lebih jarang terjadi dari pada jenis tumor kulit lainnya, tetapi lebih mematikan daripada dua jenis tumor kulit lainnya (tumor kulit sel basal dan tumor kulit sel skuamosa) (Wardhana dkk., 2019).

2.7. State of The Art

Tabel 2. 2 State of The Art

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
1.	Ihut Marojahan	2021	Analisis Dan	Daun sirih merah merupakan salah	Metode sobel dan canny mampu
	Sitanggang, Preddy		Perbandingan Metode	satu tumbuhan asli Indonesia yang	mengidentifikasi tepi dengan
	Marpaung		Sobel Dan Canny Pada	tumbuh dengan merambat atau	menggunakan perhitungan pada
	(Sitanggang, 2020)		Deteksi Tepi Citra Daun	bersandar pada batang pohon lain.	sumbu-sumbunya. Metode sobel
			Sirih Merah	Daun sirih merah memiliki variasi	dan canny mempunyai intensitas
				segi bentuk, warna, dan ukuran yang	bilangan acak yang hasilnya
				berbeda. Dilakukan identifikasi citra	berupa angka 0 dan angka 255
				daun sirih merah menggunakan	secara menyebar. Didapatkan
				metode sobel dan canny.	hasil nilai magnitude untuk MSE
					dan PSNR adalah 33,140 dan
					0.37. Deteksi tepi canny lebih
					baik jika dibandingkan dengan
					sobel.

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
2.	Chinmaya	2020	Image Texture Surface	Tekstur permukaan suatu gambar	MFD dari metode analisis
	Panigrahy, Ayan		Anlysis Using An	memainkan peran penting dalam	multifraktal gagal untuk
	Seal, Nihar Kumar		Improved Differential	memahami objek seperti agregat,	membedakan kekasaran citra
	Mahato (Panigrahy		Box-Counting Based	kayu, biji-bijian, tanah, pohon, dan	dengan tepat, karena untuk citra
	et al., 2020)		Fractal Dimension	rumah. Dimensi fraktal (FD)	maksimum, diperoleh nilai MFD
				membantu mengkarakterisasi objek-	yang hampir identik. Metode
				objek ini dengan mengukur pola	yang diusulkan menghasilkan
				tekstur kompleksnya. Penghitungan	nilai FD yang berbeda untuk
				kotak diferensial (DBC) adalah	gambar yang berbeda dari
				salah satu metode yang populer	database Outex. Meskipun
				digunakan untuk mengukur FD dari	perilaku ini membantu dalam
				gambar grayscale. Namun, ada	membedakan kekasaran gambar,
				beberapa keterbatasan. Jadi,	ini mungkin merupakan batasan
				penelitian ini memperkenalkan tiga	dari tinggi kotak berdasarkan
				metode DBC yang ditingkatkan	karakteristik gambar. Masalah
				menggunakan tiga ketinggian kotak	masalah penghitungan kurang
				masing-masing berdasarkan nilai	sepanjang arah xy telah diatasi
					tetapi masalah penghitungan

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				eigen, kurtosis, dan kemiringan	berlebih di sepanjang arah xy
				gambar.	tidak dipertimbangkan oleh
					metode yang diusulkan, karena
					masalah penghitungan berlebih
					dan penghitungan berlebih tidak
					dapat ditangani secara efisien
					secara bersamaan.
3.	Murat Erhan	2020	A New Dorsal Hand Vein	Pola urat punggung tangan	Dimensi fraktal dari gambar
	Cimen, Omer Faruk		Authentication System	merupakan ciri fisiologis yang dapat	kapal yang diproses dari setiap
	Boyraz, Mustafa		Based on Fractal	membedakan dan membedakan	database personin dihitung pada
	Zahid Yildiz, Ali		Dimension Box Counting	seseorang dari yang lain. Ekstraksi	7 sudut yang berbeda (dari -30
	Fuat Boz (Cimen et		Method	fitur dari citra dianggap sebagai	hingga 30 derajat dengan interval
	al., 2021)			langkah terpenting dalam sistem	10 derajat). Dengan cara ini,
				biometrik. Dalam studi ini, teknik	dimensi fraktal yang diekstrak
				fraktal, yang merupakan metode	dari gambar yang tahan terhadap
				lanjutan dan kompleks, diusulkan	rotasi disimpan dalam database
				untuk ekstraksi ciri dari gambar pola	untuk digunakan dalam
				bejana tangan. Dalam beberapa	identifikasi. Set data yang dilatih

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				tahun terakhir, pendekatan ini telah	menggunakan algoritma SVM
				banyak digunakan sebagai area	dan Knn kemudian diuji. Sebagai
				penelitian aktif dalam pemrosesan	hasil dari pengujian yang
				citra. Oleh karena itu, metode	dilakukan pada database SUAS,
				analisis jaringan berdasarkan ukuran	tingkat kinerja 100% dicapai
				fraktal, yang dihitung dengan	dengan algoritma klasifikasi
				metode penghitungan kotak, yang	SVM.
				merupakan teknik baru dalam	
				menentukan sifat jaringan vena	
				punggung tangan, telah diterapkan.	
4.	Wahyu Supriyatin	2020	Perbandingan Metode	Salah satu cabang ilmu pada image	Deteksi tepi prewitt memiliki
	(Supriyatin, 2020b)		Sobel, Prewitt, Robert,	processing adalah computer vision.	hasil deteksi tepi yang lebih baik
			dan Canny pada Deteksi	Dalam mengenali bentuk, dilakukan	dibandingkan dengan deteksi tepi
			Tepi Objek Bergerak	tahapan awal dalam <i>image</i>	sobel, Robert, dan canny. Hasil
				processing yaitu deteksi tepi.	deteksi tepi Prewitt lebih halus
				Deteksi tepi yang digunakan adalah	dibandingkan dengan Robert,
				sobel, prewitt, Robert, dan canny.	karena Robert tepi yang
				Objek pelacakan yang digunakan	dihasilkan lebih tebal sehingga

No	Nama Pengarai	ng Tahun	Judul	Isi Ringkasan	Hasil
				adalah objek bergerak (video) yang	ada tepi yang halus tidak terbaca.
				diambil dari <i>library Matlab</i> .	Metode Canny tidak berhasil
					melakukan deteksi tepi terhadap
					objek, sedangkan Sobel sama
					seperti Robert ada beberapa tepi
					yang hilang karena tidak terbaca.
					Hasil pengujian juga
					menunjukkan bahwa variasi
					gambar, resolusi gambar, format
					gambar dan spesifikasi letak
					kamera mempengaruhi hasil.
					Algoritma Prewitt memiliki
					tingkat akurasi yang baik dan
					efektif dalam mengenali objek
					karena tepi yang dihasilkan lebih
					jelas dan detail.
5.	Muhammad	2020	Deteksi Tepi pada Citra	Penyakit Coronavirus 2019	Pengujian pada hasil segmentasi
	Ghozali, He	eni	Rontgen Penyakit	(COVID-19) ditemukan pada akhir	untuk penyebaran penyakit

No	Nama Pengarang	Tahun	Judul		Isi Ringkasan	Hasil
	Sumarti (Ghozali &		COVID-19		tahun 2019 yang disebabkan oleh	COVID-19 dalam citra rontgen
	Sumarti, 2020a)		Menggunakan Met	tode	virus Corona 2 (SARS-CoV-2) yang	bisa dilihat dengan teknik
			Sobel		menyebabkan sindrom pernafasan	thresholding, sehingga terlihat
					akut yang parah dan meluas secara	tepi suatu objek yang lebih jelas.
					global sehingga Organisasi	Sebelum segmentasi, maka citra
					Kesehatan Dunia (WHO)	harus di filter dengan high-pass
					menyatakan pandemi global.	filter menggunakan metode
					Terjadi keterlambatan sosialisasi	sobel, sehingga menghasilkan
					dan penyampaian informasi kepada	deteksi tepi yang bisa
					masyarakat tentang penyakit ini.	memberikan informasi tentang
					Para dokter melakukan metode	daerah yang terinfeksi COVID-
					untuk mendeteksi COVID-19	19. Hal ini menunjukkan bahwa
					dengan membaca gambar rontgen	deteksi tepi menggunakan
					yang benar dari pasien yang terkena	metode sobel bisa menjadi salah
					virus corona.	satu acuan dalam pemeriksaan
						citra rontgen penyakit COVID-
						19.

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
6.	Beriman Sitohang,	2020	Analisis Dan	Daun srilanka dikenal dengan nama	Sobel dan Prewitt mampu
	Anita Sindar		Perbandingan Metode	daun sirsak, berbentuk bulat	mengidentifikasi tepi dengan
	(Sinaga, 2021)		Sobel Edge Detection	lonjong. Identifikasi citra	sumbu-sumbu yang digunakan.
			Dan prewitt Pada Deteksi	berdasarkan tepi (outline) objek	Sobel dan Prewitt memiliki
			Tepi Citra Daun	dalam pengolahan citra	intensitas bilangan acak yang
			Srilangka	menggunakan edge detection.	hasilnya berupa angka 0 dan 255
				Operasi pelacakan tepi untuk	secara menyebar. Sobel dan
				menemukan perubahan intensitas	Prewitt digunakan untuk
				lokal yang berbeda dalam sebuah	menganalisis tepi citra daun
				citra. Penerapan Sobel dan Prewitt	srilanka dan histogram
				adalah untuk mengurangi noise	ditampilkan untuk mengukur
				sebelum melakukan perhitungan	intensitas hasil metode sobel dan
				deteksi tepi sehingga tepi-tepi yang	prewitt dalam bentuk grafik
				dihasilkan lebih banyak	
7.	Yu Liu, Lingyu	2014	An Improved Differential	Metode diferensial box counting	Tiga percobaan, percobaan pada
	Chen, Heming		Box-Counting Method To	(DBC) adalah salah satu teknik yang	dua set gambar sintetik dan 16
	Wang, Lanlan		Estimate Fractal	sering digunakan untuk	gambar tekstur, telah
	Jiang, Yi Zhang,			memperkirakan dimensi fraktal	diimplementasikan untuk

No	Nama Pengarang	Tahun	Judul		Isi Ringkasan	Hasil
	Jiafei Zhao,		Dimensions of	Gray-	(FD) dari gambar 2D tingkat abu-	menguji metode kami yang telah
	Dayong Wang,		Level Images		abu. Disajikan metode DBC yang	ditingkatkan dan
	Yuechao Zhao,				ditingkatkan berdasarkan yang asli	membandingkannya dengan
	Yongchen Song				untuk peningkatan akurasi. Dengan	metode DBC lainnya. Dua
	(Liu et al., 2014)				mengadopsi modifikasi mekanisme	percobaan pertama menunjukkan
					box counting, menggeser balok	bahwa metode kami dapat
					kotak dalam bidang (x, y) dan	menghitung perkiraan FD yang
					memilih ukuran kotak bingkai yang	masuk akal dan akurat, dan dapat
					sesuai, ini dapat menyelesaikan dua	memecahkan dua jenis masalah
					jenis masalah yang dimiliki DBC:	secara bersamaan. Eksperimen
					kotak penghitungan berlebih di	terakhir menunjukkan bahwa
					sepanjang arah z dan penghitungan	metode kami yang ditingkatkan
					kurang. kotak tepat di perbatasan	dapat memperkirakan FD secara
					dua blok kotak yang berdekatan di	akurat dan kuat karena memiliki
					mana ada pintu keluar solusi tingkat	kesalahan yang paling tidak pas
					abu-abu yang tajam.	(meningkatkan akurasi sebesar
						24,1% dari DBC asli). Ini adalah

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
					metode yang kuat dan lebih
					akurat.
8.	Novita Anggraini	2020	Pendeteksian Citra Daun	Beragam jenis tumbuhan yang	Metode Box-Counting dapat
	Juwitarty, Kosala		Tanaman Menggunakan	berbeda-beda membuat identifikasi	digunakan untuk mendeteksi
	Dwidja Purnomo,		Metode Box-Counting	menjadi sulit. Proses identifikasi	citra daun tanaman dengan
	Kiswara Agung			bergantung pada hasil ekstraksi	menghitung dimensi fraktalnya.
	Santoso (Juwitarty,			yang baik, dengan mengambil salah	Didapatkan nilai rata-rata
	2020)			satu bagian dari tumbuhan, dan	kecocokan pendeteksian citra
				bagian yang paling mudah	daun tanaman dari 10 jenis daun,
				didapatkan adalah daun. Daun	dengan setiap daun terdiri dari 10
				memiliki bentuk yang tidak teratur	sampel dengan daun acuan
				dan sulit untuk diukur, tetapi hal	menggunakan Box-Counting
				tersebut dapat diatasi dengan	dalam presentase sebesar 99,9%.
				pendekatan fraktal menggunakan	Ukuran kotak variasi r yang
				metode box-counting	digunakan maksimal $\frac{1}{128}$
					didapatkan akurasi kecocokan

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
					citra daun tanaman dengan box
					counting sebesar 44%.
9.	Siska Firmasari,	2020	Analisis Geometri Fraktal	Keraton merupakan kumpulan	Analisis dimensi fraktal
	Herri Sulaiman		Pada Bentuk Bangunan di	bangunan tempat bersemayam raja	bertujuan untuk mengetahui
	(Sulaiman &		Komplek Keraton	dan keluarganya. Raja sebagai	dimensi fraktal yang terdapat
	Firmasari, 2020)		Kanoman Cirebon	kepala pemerintahan selalu tinggal	pada lawang seblawong, mande
				di dalam keraton yang biasanya	manguntur, dan gapura barat
				dijadikan sebagai pusat kerajaan dan	memperlihatkan bentukan dasar
				segala kegiatan politik, ekonomi,	dan pola perulangan yang
				sosial, dan budaya. Para pejabat	terbentuk pada sketsa.
				tinggi kerajaan dan bangsawan	Didapatkan hasil bahwa masing-
				biasanya juga tinggal di sekitar	masing objek bangunan keraton
				istana. Geometri menjadi suatu hal	Kanoman memiliki kedalaman
				yang sangat penting dalam	dimensi fraktal sebesar 1,74
				perancangan arsitektur sebagai alat	untuk lawang seblawang, objek
				untuk mendefinisikan ruang. Seperti	gapura barat memiliki
				yang diketahui geometri merupakan	kedalaman (dimensi fraktal) D
				sebuah order yang memimpin	mendekati 1,55, dan 1,82 untuk

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				perancang dalam prosesnya secara	objek mande manguntur. Artinya
				efisien mencapai sesuatu yang	menunujukan tingkat kekasaran
				diinginkan menjadi 'indah'. Aturan-	dan detail pada bentuk geometri
				aturan yang ada tersebut	tersebut tergolong tinggi.
				kelihatannya mengikat dan	
				mengarahkan suatu perancangan ke	
				satu tujuan tertentu. Identifikasi	
				bentuk bangunan komplek keraton	
				Kanoman akan menggunakan	
				proporsi dan perbandingan bagian	
				fasad dan plan, sehingga ditemukan	
				prinsip geometri perbandingan yang	
				tepat.	
10.	Nur Alifa Isnaini,	2019	Klasifikasi Jenis Tumor	Kulit adalah organ yang rawan	Pengenalan jenis tumor kulit
	Dwi Juniati (Alifa		Kulit Menggunakan	mengalami kelainan karena	menggunakan metode box-
	& Juniati, 2019)		Dimensi Fraktal Box-	berperan aktif untuk tubuh	counting dan K-Means
			Counting dan K-Means	berinteraksi dengan dunia luar	menghasilkan akurasi sebesar
				secara langsung. Salah satu kelainan	100% untuk pengklasteran

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				yang terjadi pada kulit yaitu tumor	menjadi 2 klaster (tumor jinak
				kulit. Citra yang diolah nantinya	dan tumor ganas/kanker), dan
				akan dicari bentuk tepiannya untuk	65% untuk pengklasteran
				mengetahui perbedaan jenis tumor	menjadi menjaid 3 klaster (nevus
				yang dapat diamati dari karakteristik	normal, nevus aptikal, dan
				tepiannya.	melanoma).
11.	M. Abrar Masril,	2019	Analisis Perbandingan	Citra hasil dari deteksi tepi kualitas	Morfologi Dilasi pada operator
	Yuhandri, Jufriadif		Perbaikan Kualitas Citra	belum optimal. Dari permasalahan	Robert, Sobel, dan Canny dapat
	Na'am (Masril et		Pada Motif Batik Dengan	tersebut diperlukan sebuah metode	meningkatkan kualitas citra
	al., 2019a)		Konsep Deteksi Tepi	untuk meningkatkan kualitas citra	deteksi tepi dan meningkatkan
			Robert, Sobel, Canny	deteksi tepi. Metode yang	akurasi pada pola batik. Hasil
			Menggunakan Metode	digunakan adalah Morfologi Dilasi	dari pengujian perbaikan kualitas
			Morfologi	pada hasil deteksi tepi pola batik.	citra deteksi tepi 10 motif batik
					menggunakan Morfologi Dilasi
					menunjukan bahwa operator
					Canny mampu menghasilkan
					akurasi sangat tinggi dari
					operator Robert dan Sobel,

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
					dengan persentase operator
					Canny adalah 80%. Sedangkan
					operator Robert dengan
					persentase 40% dan operator
					Sobel 60%.
12.	Iman, Nurhasanah,	2018	Analisis Fraktal Untuk	Dicari pemodelan matematis yang	Diketahui kaitan dimensi fraktal
	Joko Sampurno		Identifikasi Kadar Gula	menghubungkan antara dimensi	citra kulit rambutan dan kadar
	(Iman et al., 2018)		Rambutan dengan	fraktal dan kadar gula pada daging	gula pada daging buah rambutan,
			Metode Box-Counting	buah rambutan. Terdapat tiga	bahwa semakin kompleks
				tahapan pada pengujian yang	struktur kulit buah rambutan,
				dilakukan yang terdiri dari Uji kadar	maka akan diikuti semakin tinggi
				gula, pengolahan citra dan analisis	kadar gula pada daging buahnya.
				fraktal.	Hubungan dimensi fraktal dan
					kadar gula didekati dengan
					pendekatan regresi polynomial
					pangkat 3. Didapatkan model
					matematis dengan nilai R-square
					0.9867 dan nilai <i>RMSE</i> 0.132.

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
13.	Chusnul Khotimah,	2017	Pengenalan Iris Mata	Karakteristik manusia yang unik	Citra di normalisasi sebelum
	Dwi Juniarti		Menggunakan Ekstrasi	menyebabkan biometrika sebagai	dilakukan perhitungan dimensi
	(Khotimah, 2017)		Fitur Dimensi Fraktal	ilmu yang mempelari biologis	fraktal menggunakan box-
			Box-Counting	manusia banyak digunakan sebagai	counting. Normalisasi citra
				sistem identifikasi yang efektif dan	dilakuakan dengan menggunakan
				efisien. Biometrika digolongkan	metode Canny untuk mendeteksi
				menjadi dua. Pertama, physiological	tepian objek iris, Hough
				yang meliputi wajah, retina, sidik	Transformation untuk
				jari, DNA, dan iris. Kedua	segmentasi iris, Cross-Validation
				behavioral yang meliputi suara,	untuk membandingkan dan
				tanda tangan dan cara berjalan. Iris	mengevaluasi algoritma, K-
				dipilih dikarenakan setiap orang	Nearest Neighbor (KNN) untuk
				memiliki ciri khusus yang berbeda	dapat memperkirakan kelas suatu
				dan iris dilindungi kornea sehingga	objek yang belum diketahui
				memiliki bentuk tetap.	labelnya. Pengenalan iris mata
					menggunakan metode box-
					counting memperoleh akurasi
					sebesar 92.632 ± 0.56 % dengan

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
					nilai 3-NN sebagai nilai K
					optimum.
14.	Rizki Yara Exsa	2017	Analisis Dimensi Fraktal	Jantung adalah organ tubuh manusia	Didapatkan data nilai dimensi
	Narvinda, Arif		Sinyal Elektrokardiografi	yang memiliki fungsi vital, kelainan	fraktal dengan jenis sampel MIT-
	Surtono, Amanto			kecil bisa berpengaruh besar pada	BIH Normal Sinus Rhythm
	(Narvinda et al.,			kinerja tubuh kita. EKG adalah	dengan nilai sampel 16265
	2017)			rekaman sinyal aktivitas listrik	menghasilkan perhitungan box
				jantung. EKG sangat penting dalam	counting sebesar 1,37. Jenis
				mendiagnosis jantung.	sampel database MIT-BIH
				Ketidaknormalan aktivitas listrik	Arrhytmia database dengan
				pada jantung atau biasa dikenal	sampel 100 menghasilkan
				dengan aritmia jantung, dapat	perhitungan box counting sebesar
				diketahui dari rekaman EKG. Sinyal	1,49. Jenis sampel MIT-BIH
				EKG ini merupakan contoh dari	Supraventri Arrhytmia Database
				fraktal alami yang mempunyai	dengan sampel 800
				kemiripan diri dan terbentuk secara	menghasilkan perhitungan box
				alami atau tanpa buatan manusia	counting sebesar 1,44. Jenis
				sehingga untuk memperoleh nilai	sampel Cu ventricular

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				dimensi sinyal EKG dapat dihitung	Tachyarrythmia dengan sampel
				dengan menggunakan dimensi	Cu01 menghasilkan pergitungan
				fraktal. Sinyal EKG yang di hitung	box counting sebesar 1,21.
				adalah sinyal EKG kondisi normal	Perhitungan tersebut
				dan arrythmia.	menjelaskan bahwa setiap jenis
					EKG memiliki nilai dimensi
					fraktal yang bebeda dan cukup
					signifikan, yang menunjukan
					bahwa dimesni fraktal berpotensi
					dapat digunakan untuk
					mencirikan jenis-jenis sinyal
					EKG, yang nantinya dapat
					menjadi input suatu sistem
					kecerdasan buatan, misalnya
					jaringan saraf tiruan.

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
15.	Ayu Ambarwan,	2016	Segmentasi Citra Digital	Pendeteksian tepi menjadi salah satu	Keempat metode deteksi tepi
	Rossi Passarella,		Menggunakan	tahapan penting pengolahan citra	memberikan nilai threshold
	Sutarno		Thresholding Otsu untuk	dalam proses segmentasi karena	berbeda-beda terhadap ketiga
	(Ambarwati,		Analisa Perbandingan	dapat mempertegas batas-batas	citra uji. Nilai threshold Otsu
	Sutarno, et al.,		Deteksi Tepi	antara objek dan latar belakang.	digunakan untuk mendefinisikan
	2016)			Banyaknya metode deteksi tepi saat	tepi sehingga citra deteksi tepi
				ini menimbulkan keraguan dalam	berupa citra biner yang memiliki
				memilih metode deteksi tepi yang	nilai 0 atau 255. Canny
				tepat dan sesuai dengan kondisi	memberikan hasil tepian yang
				citra. Berdasarkan masalah tersebut	tipis dan halus yang tidak bisa
				dilakukan penelitian untuk	oleh dideteksi oleh metode
				menganalisis kinerja metode deteksi	deteksi yang lain. Selain itu
				tepi Sobel, Prewitt, Roberts dan	Canny tidak menghilangkan
				Canny menggunakan thresholding	informasi penting gambar.
				Otsu berdasarkan nilai threshold,	Roberts membutuhkan waktu
				waktu proses dan pengamatan visual	komputasi sangat cepat
					dibandingkan dengan yang lain,
					sementara Canny membutuhkan

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
					banyak waktu dalam
					komputasinya. Nilai threshold
					Otsu merupakan nilai yang
					optimal. Nilai threshold diatur
					terlalu tinggi akan
					menghilangkan informasi pada
					gambar sedangkan jika terlalu
					rendah akan menyebabkan
					kesalahan mendeteksi tepian.
16.	Mutmainah	2016	Fractal Dimension and	Tumbuhan memegang peranan	Hasil percobaan menunjukkan
	Muchtar, Nanik		Lacunarity Combination	penting dalam kehidupan manusia.	bahwa tingkat keberhasilan
	Suciati, Christine		for Plant Leaf	Tingginya keberagaman spesies	tertinggi dalam perhitungan nilai
	Fatichah (Muchtar		Classification	tumbuhan membuat metode	dimensi fraktal dapat diperoleh
	et al., 2016)			pengamatan manual dalam	saat menggabungkan gambar
				klasifikasi dau nmenjadi semakin	dengan nilai sigma 1 sampai 4.
				sulit. Dimensi fraktal merupakan	Sedangkan hasil terbaik pada
				deskriptor bentuk dan tekstur yang	perhitungan lacunarity diperoleh
				mampu mendeskripsikan	

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				kompleksitas dari suatu objek dalam	jika ukuran <i>box</i> r yang digunakan
				bentuk dimensi pecahan. Di sisi lain,	adalah kombinasi $r = 2,4,8,16,32$.
				lacunarity adalah deskriptor tekstur	Kombinasi masing-masing fitur
				berbasis fraktal yang mampu	terbaik analisis dimensi fraktal
				mendeskripsikan heterogenitas dari	bentuk daun dan analisis
				citra tekstur. Namun lacunarity	lakunaritas tekstur daun mampu
				belum cukup dieksplorasi dalam	mencapai rata-rata akurasi
				banyak kasus dan belum ada usaha	klasifikasi sebesar 95,948%,
				yang cukup signifikan dalam	93,92% dan 89,93%
				mengkombinasikan dimensi fraktal	menggunakan pengklasifikasi
				dan <i>lacunarity</i> dalam bidang	Random Forest, SVM, dan F-
				klasifikasi tumbuhan secara	Knn. Hasil ini menunjukkan
				otomatis.	bahwa penggabungan fitur
					dimensi fraktal dan lacunarity
					lebih baik daripada
					menggunakan metode ini secara
					terpisah. Hal tersebut juga
					mampu membuktikan hipotesis

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
					bahwa terdapat sinergi antara
					kedua ciri tersebut. Kedepannya,
					kombinasi fitur berbasis fraktal
					dapat dianggap sebagai referensi
					yang baik di bidang klasifikasi
					daun tanaman
17.	Wa Ode Siti Nur	2014	Analisis Fitur Fraktal	Deteksi dini kanker payudara di	Hasil ekstraksi fitur
	Alam, Mustarum		Citra Termogram Sebagai	Indonesia terkendala sejumlah	menggunakan dimensi fraktal
	Musaruddin (Alam		Pendukung Deteksi Dini	persoalan seperti tingkat	dapat membedakan citra termal
	& Musaruddin,		Kanker Payudara	pendidikan, sosial ekonomi,	payudara normal dan citra termal
	2014)			pemahaman dan penangananyang	kanker payudara. Dimensi fraktal
				kurang tepat, yang menyebabkan	citra termal payudara normal
				40% sampai 70% pasien kanker	lebih kecil dengan nilai 1,072
				payudara datang ke dokter dalam	sampai 1,2689. Sedangkan citra
				status kanker stadium lanjut.	termal kanker payudara
				Dilakukan analisis fitur fraktal pada	menghasilkan nilai 1,4581
				citra termogram untuk mendeteksi	sampai 1,8515.
				kanker payudara.	

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
18.	M. Ikhsan Mulyadi,	2013	Sistem Identifikasi	Biometrika digunakan sebagai	Didapatkan hasil proses
	R. Rizal Isnanto,		Telapak Tangan	metode identifikasi seseorang	klasifikasi sebanyak 25 data dari
	Achmad Hidayatno		Menggunakan Ekstraksi	dengan menggunakan karakteristik	30 data uji dengan presentase
	(Mulyadi et al.,		Ciri Berbasis Dimensi	alami manusia. Telapak tangan	sebesar 83,33%. Keberhasilan
	2013)		Fraktal	adalah salah satu organ tubuh	sistem identifikasi telapak tangan
				manusia yang dapat digunakan	dipengaruhi akuisisi citra dan
				sebagai identifikasi karena memiliki	proses pengolahan awal citra.
				karakteristik tekstur yang detail dan	Pada proses pengolahan awal
				unik berdasarkan ciri-ciri utama	citra terdapat kekurangan dimana
				(principal-line features) dan ciri-ciri	pencahayaan yang dapat
				garis kusut (wringkles features),	ditangkap pada foto hasil dan
				bahkan berbeda antara tangan kanan	fokus kamera yang dapat
				dan kiri. Telapak tangan juga tidak	mempengaruhi hasil data yang
				berubah dan stabil selama bertahun-	nantinya akan diolah terutama
				tahun sehingga dapat digunakan	dapat menghilangkan sebagian
				untuk identifikasi. Tahapan yang	informasi tekstur citra telapak
				dilakukan untuk identifikasi telapak	tangan.
				tangan adalah akuisisi data,	

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				pengolahan awal normalisasi	
				intensitas citra hasil segmentasi,	
				ekstraksi ciri dan pencocokan.	
19.	Dewa Ayu Putu	2012	Segmentasi Citra	Segmentasi citra merupakan proses	Hasil pengujian masing-masing
	Kania Mulia Utami		Berdasarkan Tekstur	pertama yang dilakukan dalam	citra menghasilkan kombinasi
	(Utami, 2012)		Menggunakan	pengolahan citra, dimana	ukuran box dan window yang
			Pengukuran Lacunarity	segmentasi berfungsi	berbeda tergantung pada
			dengan Metode	mengelompokan atau membagikan	seberapa banyak kandungan
			Differential Box-	citra kedalam wilayah yang	tekstur didalamnya. Secara
			Counting	memiliki kesamaan fitur seperti	umum ukuran box 3, 5, 10, 13
				tingkat warna, tekstur, dan gerakan.	sudah cukup untuk mewakili
				Dalam proses segmentasi citra,	setiap tekstur pada beberapa citra
				tesktur dipilih menjadi salah satu	uji, sedangkan ukuran window
				bahan pengelompokan. Tekstur	yang memiliki kombinasi yang
				banyak memegang peranan penting	pas dengan ukuran box tersebut
				dalam beberapa bidang seperti	adalah 6, 8, 10, 16, 20, dan 22.
				pengelompokam objek	Ukuran window yang diperbesar
				pemandangan, penentuan bentuk	akan menghasilkan segmentasi

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
				objek, orientasi permukaan dan	tekstur yang lebih baik, tetapi
				pemerikasaan permukaan.	apabila citra memiliki ukuran
					kecil maka windiw yang besar
					menjadi tidak efektif karena
					informasi teksturnya akan
					banyak hilang.
20.	Oky Dwi	2010	Ekstraksi Ciri Citra	Penyakit kanker merupakan salah	Hasil perhitungan Dimensi
	Nurhayati, Thomas		Termogram Payudara	satu penyebab kematian utama di	Hausdorff (DH) pada termogram
	Sri Widodo, Adhi		Berbasis Dimensi Fraktal	negara Asia Tenggara. Di Indonesia,	normal jauh lebih kecil
	Susanto, Maesadji			setiap 800.000 orang Indonesia	(0 <dh<1) daripada="" termogram<="" th=""></dh<1)>
	Tjokronagoro.			terserang kanker tiap tahunnya.	kanker lanjut yang memilki
	(Nurhayati et al.,			Proses ektraksi ciri yang terdapat	dimensi lebih tinggi (1 <dh<2).< th=""></dh<2).<>
	2010)			pada citra termogram payudara	Maka disimpulkan dimensi
				menggunakan metode dimensi	fraktal box-counting, dimensi
				fraktal untuk membedakan	housdorff, maupun perhitungan
				termogram normal dan kanker	ektraksi ciri statistik dari nilai
				lanjut.	rata-rata dan standar deviasi
					dapat digunakan untuk

No	Nama Pengarang	Tahun	Judul	Isi Ringkasan	Hasil
					menentukan jenis termogram
					normal dan termogram abnormal
					(kanker).

Penelitian (Sitanggang, 2021), (Ghozali & Sumarti, 2020b), (Supriyatin, 2020c), (Masril et al., 2019b), (Ambarwati, Passarella, et al., 2016), dan (Sitohang & Sindar, 2020) merupakan penelitian yang membahas perbandingan deteksi tepi untuk mencari efektifitas dari metode deteksi tersebut dalam melakukan perhitungan untuk mencari nilai tepi dari masing-masing objek yang diteliti. Dari hasil penelitian (Sitanggang, 2021), (Ambarwati, Passarella, et al., 2016), dan (Masril et al., 2019b) meyatakan bahwa deteksi tepi *canny* memiliki tingkat akurasi yang lebih baik dari deteksi tepi lain. Sedangkan penelitian (Sitohang & Sindar, 2020) dan (Ghozali & Sumarti, 2020b) menyatakan bahwa deteksi tepi *sobel* memiliki nilai akirasi yang tinggi. Penelitian (Supriyatin, 2020c) menyatakan bahwa deteksi tepi *prewitt* menghasilkan nilai akurasi lebih baik.

2.8. Metrics Penelitian

Tabel 2. 3 Metrics Penelitian

	Nama Pengarang	Judul	Ruang Lingkup				
No			Canny	Sobel	Count Box	Objek	
1.	Ihut Marojahan	Analisis Dan Perbandingan Metode Sobel Dan	√	√		Citra Daun Sirih Merah	
	Sitanggang, Preddy	Canny Pada Deteksi Tepi Citra Daun Sirih					
	Marpaung (Sitanggang,	Merah					
	2020)						
2.	Chinmaya Panigrahy,	Image Texture Surface Anlysis Using An			√	Tekstrur citra	
	Ayan Seal, Nihar	Improved Differential Box-Counting Based					
	Kumar Mahato	Fractal Dimension					
	(Panigrahy et al., 2020)						
3.	Murat Erhan Cimen,	A New Dorsal Hand Vein Authentication			V	Dorsal Hand Vein	
	Omer Faruk Boyraz,	System Based on Fractal Dimension Box					
	Mustafa Zahid Yildiz,	Counting Method					

		Judul	Ruang Lingkup			
No	Nama Pengarang		Canny	Sobel	Count Box	Objek
	Ali Fuat Boz (Cimen et al., 2021)					
4.	Wahyu Supriyatin (Supriyatin, 2020b)	Perbandingan Metode <i>Sobel, Prewitt, Robert,</i> dan <i>Canny</i> pada Deteksi Tepi Objek Bergerak	V	V		Objek Bergerak
5.	Muhammad Ghozali, Heni Sumarti (Ghozali & Sumarti, 2020a)	Deteksi Tepi pada Citra Rontgen Penyakit COVID-19 Menggunakan Metode <i>Sobel</i>		V		Rontgen penyakit COVID-19
6.	Beriman Sitohang, Anita Sindar (Sinaga, 2021)	Analisis Dan Perbandingan Metode Sobel Edge Detection Dan prewitt Pada Deteksi Tepi Citra Daun Srilangka		V		Daun srilangka
7.		An Improved Differential Box-Counting Method To Estimate Fractal Dimensions of Gray-Level Images			V	Dimensi fraktal dari gambar hitam putih

				Ruang Lingkup			
No	Nama Pengarang	Judul	Canny	Sobel	Count Box	Objek	
	Yongchen Song (Liu et al., 2014)						
8.	Novita Anggraini Juwitarty, Kosala Dwidja Purnomo, Kiswara Agung Santoso (Juwitarty, 2020)	Pendeteksian Citra Daun Tanaman Menggunakan Metode <i>Box-Counting</i>			V	Citra daun tanaman	
9.	Siska Firmasari, Herri Sulaiman (Sulaiman & Firmasari, 2020)	Analisis Geometri Fraktal Pada Bentuk Bangunan di Komplek Keraton Kanoman Cirebon			V	Bentuk bangunan di komplek keraton kanoman cirebon	
10.	Nur Alifa Isnaini, Dwi Juniati (Alifa & Juniati, 2019)	Klasifikasi Jenis Tumor Kulit Menggunakan Dimensi Fraktal <i>Box-Counting</i> dan <i>K-Means</i>			V	Tumor kulit	
11.	M. Abrar Masril, Yuhandri, Jufriadif	Analisis Perbandingan Perbaikan Kualitas Citra Pada Motif Batik Dengan Konsep	V	1		Motif batik	

			Ruang Lingkup			Ruang Lingkup
No	Nama Pengarang	Judul	Canny	Sobel	Count Box	Objek
	Na'am (Masril et al., 2019a)	Deteksi Tepi <i>Robert, Sobel, Canny</i> Menggunakan Metode Morfologi				
12.	Iman, Nurhasanah, Joko Sampurno (Iman et al., 2018)	Analisis Fraktal Untuk Identifikasi Kadar Gula Rambutan dengan Metode <i>Box-Counting</i>			√	Kadar gula rambutan
13.	Chusnul Khotimah, Dwi Juniarti (Khotimah, 2017)	Pengenalan Iris Mata Menggunakan Ekstrasi Fitur Dimensi Fraktal <i>Box-Counting</i>			V	Citra identifikasi iris mata
14.	Rizki Yara Exsa Narvinda, Arif Surtono, Amanto (Narvinda et al., 2017)	Analisis Dimensi Fraktal Sinyal Elektrokardiografi			٧	Fraktal sinyal elektrokardiografi
15.	Ayu Ambarwan, Rossi Passarella, Sutarno	Segmentasi Citra Digital Menggunakan Thresholding Otsu untuk Analisa Perbandingan Deteksi Tepi	V			Citra grayscale

	Nama Pengarang Judul		Ruai			Ruang Lingkup
No		Canny	Sobel	Count Box	Objek	
	(Ambarwati, Sutarno, et					
	al., 2016)					
16.	Mutmainah Muchtar,	Fractal Dimension and Lacunarity			V	Klasifikasi daun tanaman
	Nanik Suciati, Christine	Combination for Plant Leaf Classification				
	Fatichah (Muchtar et al.,					
	2016)					
17.	Wa Ode Siti Nur Alam,	Analisis Fitur Fraktal Citra Termogram			1	Citra kanker payudara
	Mustarum Musaruddin	Sebagai Pendukung Deteksi Dini Kanker				
	(Alam & Musaruddin,	Payudara				
	2014)					
18.	M. Ikhsan Mulyadi, R.	Sistem Identifikasi Telapak Tangan			1	Citra telapak tangan
	Rizal Isnanto, Achmad	Menggunakan Ekstraksi Ciri Berbasis Dimensi				
	Hidayatno (Mulyadi et	Fraktal				
	al., 2013)					

	Nama Pengarang	Judul		Ruang Lingkup				
No			Canny	Sobel	Count Box	Objek		
19.	Dewa Ayu Putu Kania	Segmentasi Citra Berdasarkan Tekstur				Citra berekstensi BMP		
	Mulia Utami (Utami,	Menggunakan Pengukuran Lacunarity dengan						
	2012)	Metode Differential Box-Counting						
20.	Oky Dwi Nurhayati,	Ekstraksi Ciri Citra Termogram Payudara			1	Termogram Payudara		
	Thomas Sri Widodo,	Bebrbasis Dimensi Fraktal						
	Adhi Susanto, Maesadji							
	Tjokronagoro.							
	(Nurhayati dkk., 2010)							
	Penelitian yang	Implementasi Algoritma Canny dan Sobel	1	1	1	Citra Tumor Kulit		
	dilakukan	Untuk Prediksi Tumor Kulit Menggunakan						
		Box Counting						

Berdasarkan table 2.3 penelitian terdekat dari penelitian ini adalah penelitian (Sitanggang, 2021), (Ghozali & Sumarti, 2020), (Supriyatin, 2020), (Masril dkk., 2019), (Ambarwati, Passarella, dkk., 2016), dan (Sitohang & Sindar, 2020) tentang identifikasi tepian

objek. Namun dalam penelitian yang pernah dilakukan tersebut, algoritma yang digunakan untuk mendeteksi tepian objek yang diteliti memiliki beberapa kelemahan. Seperti citra hasil proses menggunakan algoritma deteksi tepi terlalu tebal sehingga objek dengan tepian yang lebih halus tidak dapat terbaca. Selain itu, pencahayaan pada citra mempengaruhi kualitas deteksi tepi dan hasil akhir dari proses pendefinisian garis tepi. Oleh karena itu, penelitian yang akan dilakukan menggunakan feature tambahan untuk membantu dalam proses deteksi tepi menggunakan box counting, dan algoritma Random Forest Clasiffier untuk melakukan pengklasifikasian dari objek hasil pemrosesan deteksi tepi sebelumnya. Dengan menggunakan citra tumor kulit maligna dan benigna sebagai objek yang diteliti.