OPTIMASI METODE NAÏVE BAYES CLASSIFIER MENGGUNAKANADABOOST DAN XGBOOST PADA ANALISIS SENTIMEN TIMNAS FUTSAL INDONESIA DITWITTER

Arnetalya, Devira (2023) OPTIMASI METODE NAÏVE BAYES CLASSIFIER MENGGUNAKANADABOOST DAN XGBOOST PADA ANALISIS SENTIMEN TIMNAS FUTSAL INDONESIA DITWITTER. Sarjana thesis, Universitas Siliwangi.

[img] Text
1. COVER.pdf

Download (239kB)
[img] Text
2. LEMBAR PENGESAHAN.pdf

Download (280kB)
[img] Text
3. LEMBAR PENGUJI.pdf

Download (300kB)
[img] Text
4. LEMBAR PERNYATAAN.pdf

Download (284kB)
[img] Text
5. ABSTRAK.pdf

Download (11kB)
[img] Text
6. KATA PENGANTAR.pdf

Download (125kB)
[img] Text
7. DAFTAR ISI.pdf

Download (417kB)
[img] Text
8. DAFTAR TABEL.pdf

Download (219kB)
[img] Text
9. DAFTAR GAMBAR.pdf

Download (214kB)
[img] Text
10. DAFTAR RUMUS.pdf

Download (214kB)
[img] Text
11. BAB I.pdf

Download (137kB)
[img] Text
12. BAB II.pdf

Download (711kB)
[img] Text
13. BAB III.pdf

Download (44kB)
[img] Text
14. BAB IV.pdf
Restricted to Repository staff only

Download (869kB)
[img] Text
15. BAB V.pdf
Restricted to Repository staff only

Download (9kB)
[img] Text
16. DAFTAR PUSTAKA.pdf

Download (132kB)
[img] Text
17. LAMPIRAN.pdf
Restricted to Repository staff only

Download (491kB)

Abstract

Perkembangan olahraga futsal di Indonesia terus berkembang dan menjadi salah satu olahraga andalan Indonesia di ajang internasional. Futsal menjadi olahraga yang cukup banyak diperbincangkan masyarakat Indonesia di media sosial, salah satunya media sosial Twitter. Berdasarkan data twitter, opini masyarakat cukup beragam mulai dari opini bahagia, pujian, kritikan bahkan cacian. Proses mengidentifikasi sentimen masyarakat terkait Timnas Futsal Indonesia memerlukan suatu analisis yang melalui proses komputasi, yaitu analisis sentimen. Tujuan dari penelitian ini yaitu menganalisis performa metode Naive Bayes Classifier tanpa metode boosting, Naive Bayes Classifier dengan Adaboost dan Naive Bayes Classifier dengan XGBoost dalam melakukan analisis sentimen pada media sosial Twitter terkait timnas futsal indonesia. Pengujian yang dilakukan menghasilkan klasifikasi Naïve Bayes Classifier tanpa boosting memperoleh tingkat akurasi 86,33%, presisi 59,49%, dan recall 48,60%. Kemudian setelah dilakukan optimasi menggunakan Adaboost algoritma algoritma Naïve Bayes Classifier mengalami peningkatan tingkat akurasi menjadi 87,77%, dengan presisi sebesar 93,55% dan recall 53,04%. Selain itu, dilakukan optimasi menggunakan XGBoost pada algoritma Naïve Bayes Classifier mengalami peningkatan tingkat akurasi menjadi 97,49%, dengan presisi sebesar 98,48% dan recall 74,13%. Hasil tersebut membuktikan penerapan metode boosting XGBoost dapat meningkatkan performa algoritma Naïve Bayes Classifier secara maksimal dibandingkan Adaboost. Hal tersebut disebabkan karena XGBoost akan memperbarui bobot pada setiap pohon yang dibangun untuk mendapatkan pohon klasifikasi yang kuat. Kata Kunci: adaboost, analisis sentimen, futsal indonesia, naïve bayes classifier, twitter,

Item Type: Thesis (Sarjana)
Subjects: T Technology > T Technology (General)
Divisions: Fakultas Teknik > Informatika
Depositing User: Lelis Masridah
Date Deposited: 03 Aug 2023 04:27
Last Modified: 03 Aug 2023 04:27
URI: http://repositori.unsil.ac.id/id/eprint/10258

Actions (login required)

View Item View Item